Wi-Charge

Last updated
Wi-Charge
IndustryTechnology
Founded2012
Headquarters
Rehovot
,
Israel
ServicesTechnology for long-range wireless power
Website http://wi-charge.com

Wi-Charge is an Israeli company developing technology and products for far-field wireless power transfer using focused infrared beams.

Contents

History

Wi-Charge was founded in 2012 by Victor Vaisleib, Ori Mor and Ortal Alpert. The company is developing a unique far-field wireless power technology based on infrared laser beams. In 2015, Wi-Charge demonstrated its first prototype capable of charging small electronic devices. [1] In 2017, the company claimed to obtain compliance with international safety standards. During CES 2018, Wi-Charge demonstrated simultaneous charging of multiple devices from a single transmitter. [2]

Technology

Wi-Charge claims to deliver power using focused beams of invisible infrared light. The system consists of a transmitter and a receiver. Transmitter connects to a standard power outlet and converts electricity into infrared laser beam. Receivers use a miniature photo-voltaic cell to convert transmitted light into electrical power. Receivers can be embedded into a device or connected into an existing charging port. The transmitter automatically identifies chargeable receivers and start charging. Several devices can charge at the same time. According to Wi-Charge it can deliver several watts of power to a device at several meters away. [3] The core technology is based on a distributed laser resonator which is formed by the retroreflectors within the transmitter and the receiver. [4] This unique concept allows the charging of multiple devices without any moving components and if an opaque object enters one of the beams the corresponding power transfer is turned off automatically.

A schematic description of typical wireless power transfer using a laser beam. A transmitter converts electricity into a light beam and a receiver on the other side converts the light back to electricity. Wi-Charge System 1.png
A schematic description of typical wireless power transfer using a laser beam. A transmitter converts electricity into a light beam and a receiver on the other side converts the light back to electricity.

Safety

Because laser power in the single-digit watt range is used for energy transmission, ensuring product safety is crucial. Wi-Charge has stated that its technology complies with the IEC 60825-1 International Safety Standard (laser safety). According to this standard it is a Class 1 product.

"Class 1: Lasers that are safe under reasonably foreseeable conditions of operation, including the use of optical instruments for intrabeam viewing."

In April 2019 the company announced that it has earned UL [5] safety approval. According to Wi-Charge, the system transmits power using a straight, narrow beam. The beam is contained into a small spot and all the energy falls inside the receiver. Therefore, nobody is exposed to radiated energy as long as the path between the transmitter and the receiver is not crossed. If the path between transmitter and receiver is blocked, transmission stops immediately. Once line of sight is restored, charging resumes. Wi-Charge claims that this mechanism ensures that energy exposure to people, animals or unrelated objects is always below the maximum permissible exposure (MPE):

"Sending energy over a distance, a beam always diverges, which is a bad thing as too little power is going in the right direction, and too much power splits and goes elsewhere. With RF, only relatively humble distances can be achieved, with a power capacity about a fraction of a Watt, limited by the maximum level of exposure allowed for safety. Shorter wavelength beams maintain their integrity better. With an infrared laser, we have a practically non-diverging beam able to deliver its entire power content onto a small receiver" [3]

Advantages and Limitations

Some consider the necessity of a direct line of sight between the transmitter and the receiver to be a disadvantage of using laser to deliver power is. So, devices that are hidden (such as smartphone in your pocket or medical implant) cannot be charged using this technology. [6] However, some see line of sight as an advantage because when line of sight is not used, there is potential for greater leakage of undesired energy into the environment, and there is full control over where the energy is going.

Companies that integrate Wi-Charge usually embed a rechargeable battery or super-capacitor in their products. This allows to both overcome periods where new charge is not received, as well as to deliver momentary larger bursts of energy than the average charging rate.

Wi-Charge does claim that using infrared light for long-range wireless power has advantages over using radio frequency or ultrasound because of two main reasons:

See also

Related Research Articles

<span class="mw-page-title-main">Microwave</span> Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz and 300 GHz, broadly construed. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz, or between 1 and 3000 GHz . The prefix micro- in microwave is not meant to suggest a wavelength in the micrometer range; rather, it indicates that microwaves are small, compared to the radio waves used in prior radio technology.

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

<span class="mw-page-title-main">Free-space optical communication</span> Communication using light sent through free space

Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking. "Free space" means air, outer space, vacuum, or something similar. This contrasts with using solids such as optical fiber cable.

<span class="mw-page-title-main">Infrared Data Association</span> Industry consortium for the IrDA standard

The Infrared Data Association (IrDA) is an industry-driven interest group that was founded in 1994 by around 50 companies. IrDA provides specifications for a complete set of protocols for wireless infrared communications, and the name "IrDA" also refers to that set of protocols. The main reason for using the IrDA protocols had been wireless data transfer over the "last one meter" using point-and-shoot principles. Thus, it has been implemented in portable devices such as mobile telephones, laptops, cameras, printers, and medical devices. The main characteristics of this kind of wireless optical communication are physically secure data transfer, line-of-sight (LOS) and very low bit error rate (BER) that makes it very efficient.

<span class="mw-page-title-main">Radio wave</span> Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths greater than 1 millimeter, about the diameter of a grain of rice. Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a slightly slower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

<span class="mw-page-title-main">Remote control</span> Device used to control other device remotely

In electronics, a remote control is an electronic device used to operate another device from a distance, usually wirelessly. In consumer electronics, a remote control can be used to operate devices such as a television set, DVD player or other digital home media appliance. A remote control can allow operation of devices that are out of convenient reach for direct operation of controls. They function best when used from a short distance. This is primarily a convenience feature for the user. In some cases, remote controls allow a person to operate a device that they otherwise would not be able to reach, as when a garage door opener is triggered from outside.

<span class="mw-page-title-main">Wireless</span> Transfer of information or power that does not require the use of physical wires

Wireless communication is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications involve other electromagnetic phenomena, such as light and magnetic or electric fields, or the use of sound.

<span class="mw-page-title-main">Terahertz radiation</span> Range 300-3000 GHz of the electromagnetic spectrum

Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.3 to 3 terahertz (THz), although the upper boundary is somewhat arbitrary and is considered by some sources as 30 THz. One terahertz is 1012 Hz or 1,000 GHz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm = 100 μm. Because terahertz radiation begins at a wavelength of around 1 millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy. This band of electromagnetic radiation lies within the transition region between microwave and far infrared, and can be regarded as either.

<span class="mw-page-title-main">Wireless power transfer</span> Transmission of electrical energy without wires as a physical link

Wireless power transfer (WPT), wireless power transmission, wireless energy transmission (WET), or electromagnetic power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, an electrically powered transmitter device generates a time-varying electromagnetic field that transmits power across space to a receiver device; the receiver device extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thereby increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.

<span class="mw-page-title-main">Laser safety</span> Protocols for safe use, design and implementation of laser technology

Laser radiation safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations.

<span class="mw-page-title-main">Fiber-optic communication</span> Transmitting information over optical fiber

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

WirelessHD, also known as UltraGig, is a proprietary standard owned by Silicon Image for wireless transmission of high-definition video content for consumer electronics products. The consortium currently has over 40 adopters; key members behind the specification include Broadcom, Intel, LG, Panasonic, NEC, Samsung, SiBEAM, Sony, Philips and Toshiba. The founders intend the technology to be used for Consumer Electronic devices, PCs, and portable devices.

Phased-array optics is the technology of controlling the phase and amplitude of light waves transmitting, reflecting, or captured (received) by a two-dimensional surface using adjustable surface elements. An optical phased array (OPA) is the optical analog of a radio-wave phased array. By dynamically controlling the optical properties of a surface on a microscopic scale, it is possible to steer the direction of light beams, or the view direction of sensors, without any moving parts. Phased-array beam steering is used for optical switching and multiplexing in optoelectronic devices and for aiming laser beams on a macroscopic scale.

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave. They can be received by other antennas connected to a radio receiver, this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

There are several uses of the 2.4 GHz ISM radio band. Interference may occur between devices operating at 2.4 GHz. This article details the different users of the 2.4 GHz band, how they cause interference to other users and how they are prone to interference from other users.

<span class="mw-page-title-main">Resonant inductive coupling</span> Phenomenon with inductive coupling

Resonant inductive coupling or magnetic phase synchronous coupling is a phenomenon with inductive coupling in which the coupling becomes stronger when the "secondary" (load-bearing) side of the loosely coupled coil resonates. A resonant transformer of this type is often used in analog circuitry as a bandpass filter. Resonant inductive coupling is also used in wireless power systems for portable computers, phones, and vehicles.

PowerLight Technologies is an American engineering firm providing power transmission via lasers. Its primary products are power-over-fiber which transmits energy in the form of laser light through an optic fiber, and "laser power beaming" in which the laser energy is transmitted through free space.

<span class="mw-page-title-main">RF module</span> Electronic device to transmit and receive RF signals

An RF module is a (usually) small electronic device used to transmit and/or receive radio signals between two devices. In an embedded system it is often desirable to communicate with another device wirelessly. This wireless communication may be accomplished through optical communication or through radio-frequency (RF) communication. For many applications, the medium of choice is RF since it does not require line of sight. RF communications incorporate a transmitter and a receiver. They are of various types and ranges. Some can transmit up to 500 feet. RF modules are typically fabricated using RF CMOS technology.

<span class="mw-page-title-main">Li-Fi</span> Wireless communication technology visible light story

Li-Fi is a wireless communication technology which utilizes light to transmit data and position between devices. The term was first introduced by Harald Haas during a 2011 TEDGlobal talk in Edinburgh.

Optical wireless communications (OWC) is a form of optical communication in which unguided visible, infrared (IR), or ultraviolet (UV) light is used to carry a signal. It is generally used in short-range communication.

References

  1. "Charge all your devices at once, using infrared light (hands-on)". CNET. 2015-03-10. Retrieved 2018-04-01.
  2. Munford, Monty. "These Are The 5 Best CES Products That Will Be Hot in 2018". Forbes. Retrieved 2018-04-01.
  3. 1 2 "Israeli startup turns luminaires into wireless power chargers". eeNews Europe. 2018-01-15. Retrieved 2018-04-01.
  4. "Startup Lights New Way to Wireless Charging". EETimes. 2015-10-03. Retrieved 2018-08-28.
  5. "Wi-Charge's Long-Range Wireless Power Products Earn UL Certification". Wi-Charge.com. 2019-04-15. Retrieved 2019-05-11.
  6. "Wi-Charge Promises Phone Charging by Infrared Laser". IEEE Spectrum: Technology, Engineering, and Science News. Retrieved 2018-04-01.