Wild number

Last updated

Originally, wild numbers are the numbers supposed to belong to a fictional sequence of numbers imagined to exist in the mathematical world of the mathematical fiction The Wild Numbers authored by Philibert Schogt, a Dutch philosopher and mathematician. [1] Even though Schogt has given a definition of the wild number sequence in his novel, it is couched in a deliberately imprecise language that the definition turns out to be no definition at all. However, the author claims that the first few members of the sequence are 11, 67, 2, 4769, 67. Later, inspired by this wild and erratic behaviour of the fictional wild numbers, American mathematician J. C. Lagarias used the terminology to describe a precisely defined sequence of integers which shows somewhat similar wild and erratic behaviour. Lagaria's wild numbers are connected with the Collatz conjecture and the concept of the 3x + 1 semigroup. [2] [3] The original fictional sequence of wild numbers has found a place in the On-Line Encyclopedia of Integer Sequences. [4]

Contents

The wild number problem

In the novel The Wild Numbers, The Wild Number Problem is formulated as follows:

But it has not been specified what those "deceptively simple operations" are. Consequently, there is no way of knowing how those numbers 11, 67, etc. were obtained and no way of finding what the next wild number would be.

History of The Wild Number Problem

The novel The Wild Numbers has constructed a fictitious history for The Wild Number Problem. The important milestones in this history can be summarised as follows.

DateEvent
1823Anatole Millechamps de Beauregard poses the Wild Number Problem in its original form.
1830sThe problem is generalised: How many wild numbers are there?
Are there infinitely many wild numbers?
It was conjectured that all numbers are wild.
1907Heinrich Riedel disproves the conjecture by showing that 3 is not a wild number.
Later he also proves that there are infinitely many non-wild numbers.
Early 1960sDimitri Arkanov sparks renewed interest in the almost forgotten problem
by discovering a fundamental relationship between wild numbers and prime numbers.
The presentIsaac Swift finds a solution.

Real wild numbers

In mathematics, the multiplicative semigroup, denoted by W0, generated by the set is called the Wooley semigroup in honour of the American mathematician Trevor D. Wooley. The multiplicative semigroup, denoted by W, generated by the set is called the wild semigroup. The set of integers in W0 is itself a multiplicative semigroup. It is called the Wooley integer semigroup and members of this semigroup are called Wooley integers. Similarly, the set of integers in W is itself a multiplicative semigroup. It is called the wild integer semigroup and members of this semigroup are called wild numbers. [6]

The wild numbers in OEIS

The On-Line Encyclopedia of Integer Sequences (OEIS) has an entry with the identifying number A058883 relating to the wild numbers. According to OEIS, "apparently these are completely fictional and there is no mathematical explanation". However, the OEIS has some entries relating to pseudo-wild numbers carrying well-defined mathematical explanations. [4]

Sequences of pseudo-wild numbers

Even though the sequence of wild numbers is entirely fictional, several mathematicians have tried to find rules that would generate the sequence of the fictional wild numbers. All these attempts have resulted in failures. However, in the process, certain new sequences of integers were created having similar wild and erratic behavior. These well-defined sequences are referred to as sequences of pseudo-wild numbers. A good example of this is the one discovered by the Dutch mathematician Floor van Lamoen. This sequence is defined as follows: [7] [8]

For a rational number p/q let
.
For a positive integer n, the n-th pseudo-wild number is the number obtained by iterating f, starting at n/1, until an integer is reached, and if no integer is reached the pseudo-wild number is 0.
For example, taking n=2, we have
and so the second pseudo-wild number is 66. The first few pseudo-wild numbers are
66, 66, 462, 180, 66, 31395, 714, 72, 9, 5.

Related Research Articles

The Möbius function μ(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted μ(x).

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers up to 2.95×1020, but no general proof has been found.

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and the only even prime number.

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

57 (fifty-seven) is the natural number following 56 and preceding 58.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

In number theory, a Wagstaff prime is a prime number of the form

<span class="mw-page-title-main">Colossally abundant number</span> Type of natural number

In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.

1728 is the natural number following 1727 and preceding 1729. It is a dozen gross, or one great gross. It is also the number of cubic inches in a cubic foot.

An n-parasitic number is a positive natural number which, when multiplied by n, results in movement of the last digit of its decimal representation to its front. Here n is itself a single-digit positive natural number. In other words, the decimal representation undergoes a right circular shift by one place. For example:

288 is the natural number following 287 and preceding 289. Because 288 = 2 · 12 · 12, it may also be called "two gross" or "two dozen dozen".

In mathematics, the Jacobsthal numbers are an integer sequence named after the German mathematician Ernst Jacobsthal. Like the related Fibonacci numbers, they are a specific type of Lucas sequence for which P = 1, and Q = −2—and are defined by a similar recurrence relation: in simple terms, the sequence starts with 0 and 1, then each following number is found by adding the number before it to twice the number before that. The first Jacobsthal numbers are:

In number theory, a multiplicative partition or unordered factorization of an integer is a way of writing as a product of integers greater than 1, treating two products as equivalent if they differ only in the ordering of the factors. The number is itself considered one of these products. Multiplicative partitions closely parallel the study of multipartite partitions, which are additive partitions of finite sequences of positive integers, with the addition made pointwise. Although the study of multiplicative partitions has been ongoing since at least 1923, the name "multiplicative partition" appears to have been introduced by Hughes & Shallit (1983). The Latin name "factorisatio numerorum" had been used previously. MathWorld uses the term unordered factorization.

Backhouse's constant is a mathematical constant named after Nigel Backhouse. Its value is approximately 1.456 074 948.

In number theory, the Lagarias arithmetic derivative or number derivative is a function defined for integers, based on prime factorization, by analogy with the product rule for the derivative of a function that is used in mathematical analysis.

<span class="mw-page-title-main">Real number</span> Number representing a continuous quantity

In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.

In algebra, the 3x + 1 semigroup is a special subsemigroup of the multiplicative semigroup of all positive rational numbers. The elements of a generating set of this semigroup are related to the sequence of numbers involved in the still open Collatz conjecture or the "3x + 1 problem". The 3x + 1 semigroup has been used to prove a weaker form of the Collatz conjecture. In fact, it was in such context the concept of the 3x + 1 semigroup was introduced by H. Farkas in 2005. Various generalizations of the 3x + 1 semigroup have been constructed and their properties have been investigated.

<i>The Wild Numbers</i> 1998 short novel by Philibert Schogt

The Wild Numbers is a mathematical fiction in the form of a short novel by Philibert Schogt, a Dutch philosopher and mathematician. It was first published in Dutch in 1998 and an English translation appeared in 2000. Through this work the author is trying to provide insights to the workings of a mathematics-obsessed mind. It is the story of a professor of mathematics who believes he has solved one of the great problems of mathematics -- Beauregard's Wild Number Problem. In the imaginary settings of the novel, the problem is presented as a real mathematical problem seeking a solution and not as a delusion of the protagonist. But in the real mathematical world, there is no such problem; it is a fictitious problem created by the author of the book.

References

  1. Philibert Schogt (March 23, 2000). The Wild Numbers: A Novel (First ed.). Four Walls Eight Windows. ISBN   978-1568581668.
  2. Emmer, Michele (2013). Imagine Math 2: Between Culture and Mathematics. Springer Science & Business Media. pp. 37–38. ISBN   9788847028890.
  3. Applegate, David; Lagarias, Jeffrey C. (2006). "The 3x + 1 semigroup". Journal of Number Theory. 117 (1): 146–159. doi: 10.1016/j.jnt.2005.06.010 . MR   2204740.
  4. 1 2 "A058883 : The "Wild Numbers", from the novel of the same title (Version 1)". OEIS. The OEIS Foundation. Retrieved 19 March 2016.
  5. Philibert Schogt (March 23, 2000). The Wild Numbers: A Novel (First ed.). Four Walls Eight Windows. p.  34. ISBN   978-1568581668.
  6. Jeffrey C. Lagarias (February 2006). "Wild and Wooley Numbers" (PDF). American Mathematical Monthly. 113 (2): 98–108. doi:10.2307/27641862. JSTOR   27641862 . Retrieved 28 March 2016.
  7. Schogt, Philibert (2012). "The Wild Number Problem: Math or fiction?". arXiv: 1211.6583 [math.HO].
  8. "A059175". OEIS. The OEIS Foundation. Retrieved 30 March 2016.