Wiman-Valiron theory

Last updated

Wiman-Valiron theory is a mathematical theory invented by Anders Wiman as a tool to study the behavior of arbitrary entire functions. After the work of Wiman, the theory was developed by other mathematicians, and extended to more general classes of analytic functions. The main result of the theory is an asymptotic formula for the function and its derivatives near the point where the maximum modulus of this function is attained.

Contents

Maximal term and central index

By definition, an entire function can be represented by a power series which is convergent for all complex :

The terms of this series tend to 0 as , so for each there is a term of maximal modulus. This term depends on . Its modulus is called the maximal term of the series:

Here is the exponent for which the maximum is attained; if there are several maximal terms, we define as the largest exponent of them. This number depends on , it is denoted by and is called the central index.

Let

be the maximum modulus of the function . Cauchy's inequality implies that for all . The converse estimate was first proved by Borel, and a more precise estimate due to Wiman reads [1]

in the sense that for every there exist arbitrarily large values of for which this inequality holds. In fact, it was shown by Valiron that the above relation holds for "most" values of : the exceptional set for which it does not hold has finite logarithmic measure:

Improvements of these inequality were subject of much research in the 20th century. [2]

The main asymptotic formula

The following result of Wiman [3] is fundamental for various applications: let be the point for which the maximum in the definition of is attained; by the Maximum Principle we have . It turns out that behaves near the point like a monomial: there are arbitrarily large values of such that the formula

holds in the disk

Here is an arbitrary positive number, and the o(1) refers to , where is the exceptional set described above. This disk is usually called the Wiman-Valiron disk.

Applications

The formula for for near can be differentiated so we have an asymptotic relation

This is useful for studies of entire solutions of differential equations.

Another important application is due to Valiron [4] who noticed that the image of the Wiman-Valiron disk contains a "large" annulus ( where both and are arbitrarily large). This implies the important theorem of Valiron that there are arbitrarily large discs in the plane in which the inverse branches of an entire function can be defined. A quantitative version of this statement is known as the Bloch theorem.

This theorem of Valiron has further applications in holomorphic dynamics: it is used in the proof of the fact that the escaping set of an entire function is not empty.

Later development

In 1938, Macintyre [5] found that one can get rid of the central index and of power series itself in this theory. Macintyre replaced the central index by the quantity

and proved the main relation in the form

This statement does not mention the power series, but the assumption that is entire was used by Macintyre.

The final generalization was achieved by Bergweiler, Rippon and Stallard [6] who showed that this relation persists for every unbounded analytic function defined in an arbitrary unbounded region in the complex plane, under the only assumption that is bounded for . The key statement which makes this generalization possible is that the Wiman-Valiron disk is actually contained in for all non-exceptional .

Related Research Articles

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

<span class="mw-page-title-main">Wiener process</span> Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev, and many sources, especially in analysis, refer to it as Chebyshev's inequality or Bienaymé's inequality.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In mathematics, concentration of measure is a principle that is applied in measure theory, probability and combinatorics, and has consequences for other fields such as Banach space theory. Informally, it states that "A random variable that depends in a Lipschitz way on many independent variables is essentially constant".

In complex analysis, the Phragmén–Lindelöf principle, first formulated by Lars Edvard Phragmén (1863–1937) and Ernst Leonard Lindelöf (1870–1946) in 1908, is a technique which employs an auxiliary, parameterized function to prove the boundedness of a holomorphic function on an unbounded domain when an additional condition constraining the growth of on is given. It is a generalization of the maximum modulus principle, which is only applicable to bounded domains.

In measure theory, an area of mathematics, Egorov's theorem establishes a condition for the uniform convergence of a pointwise convergent sequence of measurable functions. It is also named Severini–Egoroff theorem or Severini–Egorov theorem, after Carlo Severini, an Italian mathematician, and Dmitri Egorov, a Russian physicist and geometer, who published independent proofs respectively in 1910 and 1911.

In mathematics, and particularly in the field of complex analysis, the Hadamard factorization theorem asserts that every entire function with finite order can be represented as a product involving its zeroes and an exponential of a polynomial. It is named for Jacques Hadamard.

Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In probability theory, Lindeberg's condition is a sufficient condition for the central limit theorem (CLT) to hold for a sequence of independent random variables. Unlike the classical CLT, which requires that the random variables in question have finite variance and be both independent and identically distributed, Lindeberg's CLT only requires that they have finite variance, satisfy Lindeberg's condition, and be independent. It is named after the Finnish mathematician Jarl Waldemar Lindeberg.

In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane and has non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or to a real constant, but is not necessarily injective or surjective. Functions with this property are sometimes also known as Herglotz, Pick or R functions.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

Generalized relative entropy is a measure of dissimilarity between two quantum states. It is a "one-shot" analogue of quantum relative entropy and shares many properties of the latter quantity.

In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers.

Adding controlled noise from predetermined distributions is a way of designing differentially private mechanisms. This technique is useful for designing private mechanisms for real-valued functions on sensitive data. Some commonly used distributions for adding noise include Laplace and Gaussian distributions.

The two-dimensional critical Ising model is the critical limit of the Ising model in two dimensions. It is a two-dimensional conformal field theory whose symmetry algebra is the Virasoro algebra with the central charge . Correlation functions of the spin and energy operators are described by the minimal model. While the minimal model has been exactly solved, see also, e.g., the article on Ising critical exponents, the solution does not cover other observables such as connectivities of clusters.

References

  1. Wiman, A. (1914). "Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Gliede der zugehörigen taylor'schen Reihe". Acta Mathematica. 37: 305–326 (German). doi: 10.1007/BF02401837 . S2CID   121155803.
  2. Hayman, W. (1974). "The local growth of power series: a survey of the Wiman-Valiron method". Canadian Mathematical Bulletin . 17 (3): 317–358. doi: 10.4153/CMB-1974-064-0 .
  3. Wiman, A. (1916). "Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Betrage bei gegebenem Argumente der Funktion". Acta Mathematica. 41: 1–28 (German). doi: 10.1007/BF02422938 . S2CID   122491610.
  4. Valiron, G. (1949). Lectures on the general theory of integral functions. NY: Chelsea, reprint of the 1923 ed.
  5. Macintyre, A. (1938). "Wiman's method and the "flat regions" of integral functions". Quarterly Journal of Mathematics: 81–88. doi:10.1093/qmath/os-9.1.81.
  6. Bergweiler, W.; Rippon, Ph.; Stallard, G. (2008). "Dynamics of meromorphic functions with direct or logarithmic singularities". Proceedings of the London Mathematical Society. 97 (2): 368–400. arXiv: 0704.2712 . doi:10.1112/plms/pdn007. S2CID   16873707.