Winding factor

Last updated

In power engineering, winding factor provides a way to compare of the effectiveness of different designs of stators for alternators. Winding factor is the ratio of electromotive force (EMF) produced by a stator having a short-pitch, distributed, or skewed winding, with a stator having full-pitch, concentrated, and non-skewed, windings.

Contents

For most alternators, the stator acts as the armature. Winding factor also applies to other electric machines, but this article focuses on winding factor as it applies to alternators.

Practical alternators have a short-pitched and distributed windings to reduce harmonics and maintain constant torque. Also, either the stator or rotor may be slightly skewed from the rotor's axis to reduce cogging torque. The armature winding of each phase may be distributed in a number of pole slots. Since the EMF induced in different slots are not in phase, their phasor sum is less than their numerical sum. [1] This reduction factor is called distribution factor . The other factors that can reduce the winding factor are pitch factor and skew factor .

Pitch

In alternator design, pitch means angle. The shaft makes a complete rotation in 360 degrees, and is called mechanical degrees. However, the current in a conductors makes a complete cycle in 360 electrical degrees. Electrical degrees and mechanical degrees are related as follows:

where P is the number of poles. [2]

No matter how many poles, each pole always spans exactly 180 electrical degrees, and it is called pole pitch. Coil pitch is the number of electrical degrees spanned by the coil. [1]

Short pitch factor

A full-pitched coil is 180 electrical degrees, meaning it spans the entire pole. A short-pitched coil is less than 180 electrical degrees, meaning it does not spans the entire pole. The amount the coil is short-pitched is given by the variable in electrical degrees:

, and the pitch factor is:

.

A short pitched coil is also called chorded, in reference to the chord of a circle. [1]

Calculating winding factor

The winding factor can be calculated as
[3]

where
is the distribution factor.
is the pole factor.
is the skew factor resulting from the winding being skewed from the axis of the rotor.

Example

For a 3-phase 6 slot 4 pole non-overlapping winding alternator:

Most of 3-phase motors have winding factor values between 0.85 and 0.95.

The winding factor (along with some other factors like winding skew) can help to improve the harmonic content in the generated EMF of the machine.

Related Research Articles

<span class="mw-page-title-main">Power factor</span> Ratio of active power to apparent power

In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of RMS current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.

<span class="mw-page-title-main">Rectifier</span> Electrical device that converts AC to DC

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.

<span class="mw-page-title-main">Electric motor</span> Machine that converts electrical energy into mechanical energy

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.

In electrical circuits, reactance is the opposition presented to alternating current by inductance or capacitance. Greater reactance gives smaller current for the same applied voltage. Reactance is similar to resistance in this respect, but does not lead to dissipation of electrical energy as heat; instead, energy is momentarily stored in the reactance, and a quarter-cycle later returned to the circuit.

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the current, and follows any changes in current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

<span class="mw-page-title-main">Alternator</span> Device converting mechanical into electrical energy

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.

<span class="mw-page-title-main">Induction motor</span> Type of AC electric motor

An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor can therefore be made without electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type.

<span class="mw-page-title-main">Synchronous motor</span> Type of AC motor

A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integral number of AC cycles. Synchronous motors contain multiphase AC electromagnets on the stator of the motor that create a magnetic field which rotates in time with the oscillations of the line current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field of any AC motor. A synchronous motor is termed doubly fed if it is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.

<span class="mw-page-title-main">Mathematics of three-phase electric power</span> Mathematics and basic principles of three-phase electric power

In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y). A wye system allows the use of two different voltages from all three phases, such as a 230/400 V system which provides 230 V between the neutral and any one of the phases, and 400 V across any two phases. A delta system arrangement only provides one voltage, but it has a greater redundancy as it may continue to operate normally with one of the three supply windings offline, albeit at 57.7% of total capacity. Harmonic current in the neutral may become very large if nonlinear loads are connected.

<span class="mw-page-title-main">Armature (electrical)</span> Power-producing component of an electric machine

In electrical engineering, the armature is the winding of an electric machine which carries alternating current. The armature windings conduct AC even on DC machines, due to the commutator action or due to electronic commutation, as in brushless DC motors. The armature can be on either the rotor or the stator, depending on the type of electric machine.

<span class="mw-page-title-main">Electrical resonance</span>

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

<span class="mw-page-title-main">Rotor (electric)</span> Non-stationary part of a rotary electric motor

The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.

A brushed DC electric motor is an internally commutated electric motor designed to be run from a direct current power source and utilizing an electric brush for contact.

A permanent magnet synchronous generator is a generator where the excitation field is provided by a permanent magnet instead of a coil. The term synchronous refers here to the fact that the rotor and magnetic field rotate with the same speed, because the magnetic field is generated through a shaft mounted permanent magnet mechanism and current is induced into the stationary armature.

Vilém Klíma, originally Wilhelm Kauders, was a Czech electrical engineer and Holocaust survivor who developed a closed-form expression for the distribution factor of a symmetrical three-phase stator winding.

<span class="mw-page-title-main">Induction regulator</span>

An induction regulator is an alternating current electrical machine, somewhat similar to an induction motor, which can provide a continuously variable output voltage. The induction regulator was an early device used to control the voltage of electric networks. Since the 1930s it has been replaced in distribution network applications by the tap transformer. Its usage is now mostly confined to electrical laboratories, electrochemical processes and arc welding. With minor variations, its setup can be used as a phase-shifting power transformer.

<span class="mw-page-title-main">Flux switching alternator</span>

A flux switching alternator is a form of high-speed alternator, an AC electrical generator, intended for direct drive by a turbine. They are simple in design with the rotor containing no coils or magnets, making them rugged and capable of high rotation speeds. This makes them suitable for their only widespread use, in guided missiles.

The motor size constant and motor velocity constant are values used to describe characteristics of electrical motors.

<span class="mw-page-title-main">Coil winding technology</span> Manufacture of electromagnetic coils

In electrical engineering, coil winding is the manufacture of electromagnetic coils. Coils are used as components of circuits, and to provide the magnetic field of motors, transformers, and generators, and in the manufacture of loudspeakers and microphones. The shape and dimensions of a winding are designed to fulfill the particular purpose. Parameters such as inductance, Q factor, insulation strength, and strength of the desired magnetic field greatly influence the design of coil windings. Coil winding can be structured into several groups regarding the type and geometry of the wound coil. Mass production of electromagnetic coils relies on automated machinery.

References

  1. 1 2 3 Suad Ibrahim Shahl. "Introduction to AC Machines" (PDF). p. 7. Retrieved August 3, 2022.
  2. "Armature Winding". Circuit Globe. 5 January 2016. Retrieved July 29, 2022.
  3. Mustafa Al-Refai (2018). "Synchronous generator" (PDF). Electrical and Communications Consulting Office (ECCO). p. 20. Retrieved August 6, 2022.