Wireless Set Number 11

Last updated
Wireless set No. 11 Wireless set no.11.jpg
Wireless set No. 11

The Wireless Set Number 11, or WS No. 11, was a radio set designed for the British Army in 1938. It was designed to replace the 1933 Wireless Set No. 1 which had been found inadequate for a number of reasons. Like the No. 1, it was designed to be used in fixed locations like regimental field headquarters, as well as in vehicles and tanks.

Contents

Some No. 11s were produced between 1938 and 1940 before they, too, were considered inadequate. A smaller production run in Canada was also completed by Canadian Marconi and used both by Canadian and British forces. The No. 11 was replaced in tanks by the significantly more capable Wireless Set No. 19, while the No. 11 went on to be used by many others, notably the Long Range Desert Group.

History

The No. 11 set, a radio transceiver featuring a single tuning unit, was designed in 1938 to replace the 1933 Wireless Set No. 1. Originally designed to be used in tanks for short- and medium-range communications, it was later used by the Long Range Desert Group in Libya and Tunisia for long-range communications while deep behind enemy lines. The Germans reportedly captured several sets in France and put them to use for their own communication needs. [1] The set was also manufactured in Australia by AWA with different valves and alterations to its circuitry. [2]

Specifications

See also

Related Research Articles

<span class="mw-page-title-main">Claymore mine</span> American directional anti-personnel mine

The Claymore mine is a directional anti-personnel mine developed for the United States Armed Forces. Its inventor, Norman MacLeod, named the mine after a large medieval Scottish sword. Unlike a conventional land mine, the Claymore may be command-detonated, and is directional, shooting a wide pattern of metal balls into a kill zone. The Claymore can also be activated by a booby-trap tripwire firing system for use in area denial operations.

<span class="mw-page-title-main">Shortwave radio</span> Radio transmissions using wavelengths between 10 m and 100 m

Shortwave radio is radio transmission using radio frequencies in the shortwave bands (SW). There is no official definition of the band range, but it always includes all of the high frequency band (HF), which extends from 3 to 30 MHz ; above the medium frequency band (MF), to the bottom of the VHF band.

<span class="mw-page-title-main">Very high frequency</span> Electromagnetic wave range of 30-300 MHz

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

<span class="mw-page-title-main">Ultra high frequency</span> Electromagnetic spectrum 300–3000 MHz

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, satellite phones, and numerous other applications.

<span class="mw-page-title-main">Wireless</span> Transfer of information or power that does not require the use of physical wires

Wireless communication is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications involve other electromagnetic phenomena, such as light and magnetic or electric fields, or the use of sound.

<span class="mw-page-title-main">Walkie-talkie</span> Hand-held portable two-way communications device

A walkie-talkie, more formally known as a handheld transceiver (HT), is a hand-held, portable, two-way radio transceiver. Its development during the Second World War has been variously credited to Donald Hings, radio engineer Alfred J. Gross, Henryk Magnuski and engineering teams at Motorola. First used for infantry, similar designs were created for field artillery and tank units, and after the war, walkie-talkies spread to public safety and eventually commercial and jobsite work.

<span class="mw-page-title-main">Valentine tank</span> British infantry tank

The Tank, Infantry, Mk III, Valentine was an infantry tank produced in the United Kingdom during World War II. More than 8,000 of the type were produced in eleven marks, plus various specialised variants, accounting for approximately a quarter of wartime British tank production. The many variants included riveted and welded construction, petrol and diesel engines and a progressive increase in armament. It was supplied in large numbers to the USSR and built under licence in Canada. It was used extensively by the British in the North African campaign. Developed by Vickers, it proved to be both strong and reliable.

Extremely high frequency (EHF) is the International Telecommunication Union (ITU) designation for the band of radio frequencies in the electromagnetic spectrum from 30 to 300 gigahertz (GHz). It lies between the super high frequency band and the far infrared band, the lower part of which is the terahertz band. Radio waves in this band have wavelengths from ten to one millimetre, so it is also called the millimetre band and radiation in this band is called millimetre waves, sometimes abbreviated MMW or mmWave. Millimetre-length electromagnetic waves were first investigated by Jagadish Chandra Bose, who generated waves of frequency up to 60 GHz during experiments in 1894–1896.

<span class="mw-page-title-main">Apollo command and service module</span> Component of the Apollo spacecraft

The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.

<span class="mw-page-title-main">Two-way radio</span> Radio that can both transmit and receive a signal, used for bidirectional voice communication

A two-way radio is a radio transceiver, which is used for bidirectional person-to-person voice communication with other users with similar radios, in contrast to a broadcast receiver, which only receives transmissions.

<span class="mw-page-title-main">QF 2-pounder naval gun</span> British naval gun

The 2-pounder gun, officially the QF 2-pounder and universally known as the pom-pom, was a 40 mm (1.6 in) British autocannon, used as an anti-aircraft gun by the Royal Navy. The name came from the sound that the original models make when firing. This QF 2-pounder was not the same gun as the Ordnance QF 2-pounder, used by the British Army as an anti-tank gun and a tank gun, although they both fired 2 lb (0.91 kg), 40 mm (1.6 in) projectiles.

<span class="mw-page-title-main">AeroVironment</span> American unmanned aerial vehicle manufacturer

AeroVironment, Inc. is an American defense contractor headquartered in Arlington, Virginia, that designs and manufactures unmanned aerial vehicles (UAVs). Paul B. MacCready Jr., a designer of human-powered aircraft, founded the company in 1971. The company is best known for its lightweight human-powered and solar-powered vehicles. The company is the US military's top supplier of small drones —notably the Raven, Switchblade, Wasp and Puma models.

<span class="mw-page-title-main">RP-3</span> Unguided air-to-surface rocket

The RP-3 was a British air to ground rocket projectile introduced during the Second World War. The "3 inch" designation referred to the nominal diameter of the rocket motor tube. The use of a 60 lb (27 kg) warhead gave rise to the alternative name of the "60-pound rocket". Though an air-to-ground weapon, it saw limited use in other roles. They were generally used by British fighter-bomber aircraft against targets such as tanks, trains, motor transport and buildings, as well as by Coastal Command and Royal Navy aircraft against U-boats and ships.

<span class="mw-page-title-main">Two-inch mortar</span> Light mortar

The Ordnance SBML two-inch mortar, or more commonly, just "two-inch mortar", was a British mortar issued to the British Army and the Commonwealth armies, that saw use during the Second World War and later.

<span class="mw-page-title-main">Ordnance QF 20-pounder</span> Tank gun

The Ordnance QF 20 pounder was a British 84 mm (3.307 inch) tank gun. It was introduced in 1948 and used in the Centurion main battle tank, Charioteer medium tank, and Caernarvon Mark II heavy tank. After the 20 pounder gun was found to have inadequate performance against the Soviet T-54 the gun was mostly replaced in service by the larger calibre 105 mm L7 gun.

<span class="mw-page-title-main">Radio</span> Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.

<span class="mw-page-title-main">Wireless Set No. 19</span> British Army tactical radio

The Wireless Set No. 19 was a Second World War mobile radio transceiver designed for use by armoured troops of the British Army. First introduced in 1940, the No. 19 began to replace the pre-war Wireless Set No. 11. Two modified versions were introduced, Mk. II in 1941 and Mk. III in 1942. An improved version from Canada was introduced in 1942 for use primarily with other forces. In British service, the No. 19 was replaced in the post-war era by the Larkspur radio system. Canadian-built No. 19s saw continued service for many years with a variety of users.

<span class="mw-page-title-main">Cannonball (missile)</span>

The Cannonball Missile also known as the D-40 was designed by the Applied Physics Laboratory of the Johns Hopkins University under a United States Navy contract in the early 1950s. The missile originally started out as an anti-ship missile to be launched from submarines. In 1952 the US Army Chief of Ordnance funded the project for development as an anti-tank missile. Between 1953 and 1956, around 50 D-40 missiles were test fired.

<span class="mw-page-title-main">SCR-300</span> WWII United States military portable radio transceiver

The SCR-300 was a portable radio transceiver used by US Signal Corps in World War II. This backpack-mounted unit was the first radio to be nicknamed a "walkie talkie".

References

  1. 1 2 "Royal Signals Museum – Equipment – Wireless Set No 11". Army Net UK. 29 August 2009. Archived from the original on 29 August 2009. Retrieved 15 April 2016.
  2. "Wireless Set No 11 (Aust)". Waverley Amateur Radio Society. 30 August 2007. Archived from the original on 18 January 2015. Retrieved 15 April 2016.