Wirtinger inequality (2-forms)

Last updated
For other inequalities named after Wirtinger, see Wirtinger's inequality.

In mathematics, the Wirtinger inequality, named after Wilhelm Wirtinger, is a fundamental result in complex linear algebra which relates the symplectic and volume forms of a hermitian inner product. It has important consequences in complex geometry, such as showing that the normalized exterior powers of the Kähler form of a Kähler manifold are calibrations.

Contents

Statement

Consider a real vector space with positive-definite inner product g, symplectic form ω, and almost-complex structure J, linked by ω(u, v) = g(J(u), v) for any vectors u and v. Then for any orthonormal vectors v1, ..., v2k there is

There is equality if and only if the span of v1, ..., v2k is closed under the operation of J. [1]

In the language of the comass of a form, the Wirtinger theorem (although without precision about when equality is achieved) can also be phrased as saying that the comass of the form ω ∧ ⋅⋅⋅ ∧ ω is equal to k!. [1]

Proof

k = 1

In the special case k = 1, the Wirtinger inequality is a special case of the Cauchy–Schwarz inequality:

According to the equality case of the Cauchy–Schwarz inequality, equality occurs if and only if J(v1) and v2 are collinear, which is equivalent to the span of v1, v2 being closed under J.

k > 1

Let v1, ..., v2k be fixed, and let T denote their span. Then there is an orthonormal basis e1, ..., e2k of T with dual basis w1, ..., w2k such that

where ι denotes the inclusion map from T into V. [2] This implies

which in turn implies

where the inequality follows from the previously-established k = 1 case. If equality holds, then according to the k = 1 equality case, it must be the case that ω(e2i − 1, e2i) = ±1 for each i. This is equivalent to either ω(e2i − 1, e2i) = 1 or ω(e2i, e2i − 1) = 1, which in either case (from the k = 1 case) implies that the span of e2i − 1, e2i is closed under J, and hence that the span of e1, ..., e2k is closed under J.

Finally, the dependence of the quantity

on v1, ..., v2k is only on the quantity v1 ∧ ⋅⋅⋅ ∧ v2k, and from the orthonormality condition on v1, ..., v2k, this wedge product is well-determined up to a sign. This relates the above work with e1, ..., e2k to the desired statement in terms of v1, ..., v2k.

Consequences

Given a complex manifold with hermitian metric, the Wirtinger theorem immediately implies that for any 2k-dimensional embedded submanifold M, there is

where ω is the Kähler form of the metric. Furthermore, equality is achieved if and only if M is a complex submanifold. [3] In the special case that the hermitian metric satisfies the Kähler condition, this says that 1/k!ωk is a calibration for the underlying Riemannian metric, and that the corresponding calibrated submanifolds are the complex submanifolds of complex dimension k. [4] This says in particular that every complex submanifold of a Kähler manifold is a minimal submanifold, and is even volume-minimizing among all submanifolds in its homology class.

Using the Wirtinger inequality, these facts even extend to the more sophisticated context of currents in Kähler manifolds. [5]

See also

Notes

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Calabi–Yau manifold</span> Riemannian manifold with SU(n) holonomy

In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi who first conjectured that such surfaces might exist, and Shing-Tung Yau (1978) who proved the Calabi conjecture.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

<span class="mw-page-title-main">Contact geometry</span>

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection.

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of the way a differential form restricts to a submanifold, and the fact that this restriction is compatible with the exterior derivative. This is one possible approach to certain over-determined systems, for example, including Lax pairs of integrable systems. A Pfaffian system is specified by 1-forms alone, but the theory includes other types of example of differential system. To elaborate, a Pfaffian system is a set of 1-forms on a smooth manifold.

In mathematics, a complex differential form is a differential form on a manifold which is permitted to have complex coefficients.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In complex analysis of one and several complex variables, Wirtinger derivatives, named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiable functions on complex domains. These operators permit the construction of a differential calculus for such functions that is entirely analogous to the ordinary differential calculus for functions of real variables.

In mathematics, and in particular gauge theory and complex geometry, a Hermitian Yang–Mills connection is a Chern connection associated to an inner product on a holomorphic vector bundle over a Kähler manifold that satisfies an analogue of Einstein's equations: namely, the contraction of the curvature 2-form of the connection with the Kähler form is required to be a constant times the identity transformation. Hermitian Yang–Mills connections are special examples of Yang–Mills connections, and are often called instantons.

<span class="mw-page-title-main">Marie-Louise Michelsohn</span> American mathematician

Marie-Louise Michelsohn is a professor of mathematics at State University of New York at Stony Brook.

This article summarizes several identities in exterior calculus.

In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger in the case of Abelian gauge group, and by Leung–Yau–Zaslow using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.

In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold to integrals from a family of varieties. In short, this means there is a relation between the number of genus algebraic curves of degree on a Calabi-Yau variety and integrals on a dual variety . These relations were original discovered by Candelas, de la Ossa, Green, and Parkes in a paper studying a generic quintic threefold in as the variety and a construction from the quintic Dwork family giving . Shortly after, Sheldon Katz wrote a summary paper outlining part of their construction and conjectures what the rigorous mathematical interpretation could be.

In mathematics, and especially symplectic geometry, the Thomas–Yau conjecture asks for the existence of a stability condition, similar to those which appear in algebraic geometry, which guarantees the existence of a solution to the special Lagrangian equation inside a Hamiltonian isotopy class of Lagrangian submanifolds. In particular the conjecture contains two difficulties: first it asks what a suitable stability condition might be, and secondly if one can prove stability of an isotopy class if and only if it contains a special Lagrangian representative.

In complex geometry, the Kähler identities are a collection of identities between operators on a Kähler manifold relating the Dolbeault operators and their adjoints, contraction and wedge operators of the Kähler form, and the Laplacians of the Kähler metric. The Kähler identities combine with results of Hodge theory to produce a number of relations on de Rham and Dolbeault cohomology of compact Kähler manifolds, such as the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge-Riemann bilinear relations, and the Hodge index theorem. They are also, again combined with Hodge theory, important in proving fundamental analytical results on Kähler manifolds, such as the -lemma, the Nakano inequalities, and the Kodaira vanishing theorem.

References