Write strategy

Last updated

In DVD authoring, a write strategy is a set of low-level parameters that enables an optical disc drive to write on a specific type of blank media according to its optimum specifications. [1] The media type is identified by the manufacturer and media ID, which is often unrelated to the brand of the media due to rebadging. Write strategies are essential for compatibility with various types of blank media, and are typically stored in the drive's firmware. If a drive lacks a write strategy for a media type, it will only be able to write using minimum speed. Drive manufacturers typically include new or improved write strategies as part of a firmware upgrade, in order to extend or improve compatibility with blank media. In cases where official support for a drive has been discontinued or is deemed unsatisfactory, users have come up with ways to patch the write strategies by modding the drive's firmware.

Contents

Learning

Many DVD-writers have a learning feature (branded with names like "smart-burn") that allows the drive to collect empirical data from its actual usage. The drive stores data from previous burns in its EEPROM, allowing it to adapt the default write strategies to account for individual drive variations, such as calibration, which may be affected by environment and age.

A newer feature contained in some DVD writers allows a drive to invent write strategies for unknown media types, ostensibly reducing its dependence on firmware to provide explicit compatibility. However, because the drive initially knows nothing of the media type, early burns are frequently of poor quality, and the media's optimal strategy may never be found. Thus, in practice, this form of learning is generally a last resort, and firmware support is preferable. An attempt to address this weakness is online learning, which allows the drives to share learned data. Branded technologies that incorporate this form of learning have been given names like "solid burn" and "hypertuning".

In either case, if the history data is reset, or if the data is skewed by a series of irregular burns, the speed and/or quality of a typical burn may not be optimal until the history is repopulated with proper result data again.

See also

Related Research Articles

<span class="mw-page-title-main">Compact disc</span> Digital optical disc data storage format

The compact disc (CD) is a digital optical disc data storage format that was co-developed by Philips and Sony to store and play digital audio recordings. In August 1982, the first compact disc was manufactured. It was then released in October 1982 and branded as Digital Audio Compact Disc.

<span class="mw-page-title-main">CD-R</span> Recordable optical disc technology

CD-R is a digital optical disc storage format. A CD-R disc is a compact disc that can be written once and read arbitrarily many times.

<span class="mw-page-title-main">Motherboard</span> Main printed circuit board (PCB) for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

A disk image, in computing, is a computer file containing the contents and structure of a disk volume or of an entire data storage device, such as a hard disk drive, tape drive, floppy disk, optical disc, or USB flash drive. A disk image is usually made by creating a sector-by-sector copy of the source medium, thereby perfectly replicating the structure and contents of a storage device independent of the file system. Depending on the disk image format, a disk image may span one or more computer files.

Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or forms of sequential-access memory such as magnetic tape, which cannot be randomly accessed but which retains data indefinitely without electric power.

<span class="mw-page-title-main">Optical disc drive</span> Type of computer disk storage dive

In computing, an optical disc drive is a disc drive that uses laser light or electromagnetic waves within or near the visible light spectrum as part of the process of reading or writing data to or from optical discs. Some drives can only read from certain discs, but recent drives can both read and record, also called burners or writers. Compact discs, DVDs, and Blu-ray discs are common types of optical media which can be read and recorded by such drives.

<span class="mw-page-title-main">USB flash drive</span> Data storage device

A USB flash drive is a data storage device that includes flash memory with an integrated USB interface. It is typically removable, rewritable and much smaller than an optical disc. Most weigh less than 30 g (1 oz). Since first appearing on the market in late 2000, as with virtually all other computer memory devices, storage capacities have risen while prices have dropped. As of March 2016, flash drives with anywhere from 8 to 256 gigabytes (GB) were frequently sold, while 512 GB and 1 terabyte (TB) units were less frequent. As of 2018, 2 TB flash drives were the largest available in terms of storage capacity. Some allow up to 100,000 write/erase cycles, depending on the exact type of memory chip used, and are thought to physically last between 10 and 100 years under normal circumstances.

<span class="mw-page-title-main">DVD-RAM</span> Variant of DVD designed with random access in mind

DVD-RAM is a DVD-based disc specification presented in 1996 by the DVD Forum, which specifies rewritable DVD-RAM media and the appropriate DVD writers. DVD-RAM media have been used in computers as well as camcorders and personal video recorders since 1998.

<span class="mw-page-title-main">DVD+R DL</span> DVD Recordable Dual Layer

DVD+R DL also called DVD+R9, is a derivative of the DVD+R format created by the DVD+RW Alliance. Its use was first demonstrated in October 2003. DVD+R DL discs employ two recordable dye layers, each capable of storing nearly the 4.7 GB capacity of a single-layer disc, almost doubling the total disc capacity to 8.5 GB. Discs can be read in many DVD devices and can only be created using DVD+R DL and Super Multi drives. DL drives started appearing on the market during mid-2004, at prices comparable to those of existing single-layer drives. As of March 2011 DL media is up to twice as expensive as single-layer media. The latest DL drives write double layer discs at a slower rate than current single-layer discs.

A DVD recorder is an optical disc recorder that uses optical disc recording technologies to digitally record analog or digital signals onto blank writable DVD media. Such devices are available as either installable drives for computers or as standalone components for use in television studios or home theater systems.

The Media Identification Code (MID) is used on DVD-R, DVD+R and DVD-RAM discs to identify the manufacturer and to assist the DVD burner to select the best write strategy for the inserted media. The technology is inherited from the ATIP code used on CD-R discs.

Plextor is a Taiwanese consumer electronics brand, best known for solid-state drives and optical disc drives.

<span class="mw-page-title-main">DVD-R DL</span> DVD Recordable Dual Layer

DVD-R DL, also called DVD-R9, is a derivative of the DVD-R format standard. DVD-R DL discs hold 8.5 GB by utilizing two recordable dye layers, each capable of storing a little less than the 4.7 gigabyte (GB) of a single layer disc, almost doubling the total disc capacity. Discs can be read in many DVD devices and can only be written using DVD-R DL compatible recorders. It is part of optical disc recording technologies for digital recording to optical disc.

<span class="mw-page-title-main">DVD recordable</span> Recordable optical disk technology

DVD recordable and DVD rewritable are optical disc recording technologies. Both terms describe DVD optical discs that can be written to by a DVD recorder, whereas only 'rewritable' discs are able to erase and rewrite data. Data is written ('burned') to the disc by a laser, rather than the data being 'pressed' onto the disc during manufacture, like a DVD-ROM. Pressing is used in mass production, primarily for the distribution of home video.

<span class="mw-page-title-main">Optical disc recording technologies</span> List of technologies used to write to optical discs

Optical disc authoring requires a number of different optical disc recorder technologies working in tandem, from the optical disc media to the firmware to the control electronics of the optical disc drive.

<span class="mw-page-title-main">CD-RW</span> Optical disk technology

CD-RW is a digital optical disc storage format introduced in 1997. A CD-RW compact disc (CD-RWs) can be written, read, erased, and re-written.

<span class="mw-page-title-main">Blu-ray Disc recordable</span>

Blu-ray Disc Recordable (BD-R) refers to two direct to disc optical disc recording technologies that can be recorded on to a Blu-ray-based optical disc with an optical disc recorder. BD-R discs can be written to once, whereas Blu-ray Disc Recordable Erasable (BD-RE) can be erased and re-recorded multiple times. Disc capacities are 25 GB for single-layer discs, 50 GB for double-layer discs, 100 GB ("XL") for triple-layer, and 128 GB for quadruple-layer.

In the history of optical storage media there have been and there are different optical disc formats with different data writing/reading speeds.

<span class="mw-page-title-main">Read-only memory</span> Electronic memory that cannot be changed

Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications for programmable devices can be distributed as plug-in cartridges containing ROM.

<span class="mw-page-title-main">Computer hardware</span> Physical components of a computer

Computer hardware includes the physical parts of a computer, such as the case, central processing unit (CPU), random access memory (RAM), monitor, mouse, keyboard, computer data storage, graphics card, sound card, speakers and motherboard.

References

  1. Jan Willem (May 7, 2005). "Philips introduces SolidBurn - improves DVD burn quality, ends MID mess". CD Freaks . Retrieved 2008-07-24.[ dead link ]