Xerox Sigma 9

Last updated
Xerox Sigma 9
LCM - Xerox Sigma 9 - 01.jpg
Living Computer Museum - Xerox Sigma 9
DeveloperXerox
Product familyXerox Sigma
Release date1970
Front of the Xerox Sigma 9. On display at the Living Computer Museum in Seattle, Washington. Xerox Sigma 9.jpg
Front of the Xerox Sigma 9. On display at the Living Computer Museum in Seattle, Washington.

The Xerox Sigma 9, also known as the XDS Sigma 9, is a high-speed, general purpose computer.

Contents

Xerox first became interested in office automation through computers in 1969 and purchased Scientific Data Systems or SDS. They then renamed the division Xerox Data Systems or XDS; they saw limited success, and the division was ultimately sold to Honeywell at a significant loss. [1]

The Sigma 9 was announced in 1970 and the first delivery was made in 1971. [2] There were 3 models built, the Sigma 9, the Sigma 9 Model 2 and the Sigma 9 Model 3. The original was the most powerful and was universally applicable to all data processing applications at the time. The Model 2 was able to process in multi-programmed batch, remote batch, conversational time-sharing, real-time, and transaction processing modes. The Model 3 was designed for the scientific real-time community.

Features of the Basic Systems

All models featured a CPU with at least a floating-point arithmetic unit, Memory map with access protection, Memory write protection, Two real-time clocks, a Power fail-safe, an External interface, Ten internal interrupt levels. Also a Multiplexor input/output processor (MIOP) featuring Channel A with eight sub-channels. [3]

Listed below are the individual specifications

Sigma 9

Model 2

Model 3

Related Research Articles

<span class="mw-page-title-main">Central processing unit</span> Central computer component which executes instructions

A central processing unit (CPU), also called a central processor, main processor, or just processor, is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).

The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. A CU typically uses a binary decoder to convert coded instructions into timing and control signals that direct the operation of the other units.

In processor design, microcode serves as an intermediary layer situated between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer, also known as its machine code. It consists of a set of hardware-level instructions that implement the higher-level machine code instructions or control internal finite-state machine sequencing in many digital processing components. While microcode is utilized in Intel and AMD general-purpose CPUs in contemporary desktops and laptops, it functions only as a fallback path for scenarios that the faster hardwired control unit is unable to manage.

<span class="mw-page-title-main">Microcontroller</span> Small computer on a single integrated circuit

A microcontroller or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of NOR flash, OTP ROM, or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips.

<span class="mw-page-title-main">PDP-10</span> 36-bit computer by Digital (1966–1983)

Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used.

The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years. In 1989, Honeywell sold its computer division to the French company Groupe Bull who continued to market compatible machines.

<span class="mw-page-title-main">CDC 6600</span> Mainframe computer by Control Data

The CDC 6600 was the flagship of the 6000 series of mainframe computer systems manufactured by Control Data Corporation. Generally considered to be the first successful supercomputer, it outperformed the industry's prior recordholder, the IBM 7030 Stretch, by a factor of three. With performance of up to three megaFLOPS, the CDC 6600 was the world's fastest computer from 1964 to 1969, when it relinquished that status to its successor, the CDC 7600.

<span class="mw-page-title-main">Memory address</span> Reference to a specific memory location

In computing, a memory address is a reference to a specific memory location used at various levels by software and hardware. Memory addresses are fixed-length sequences of digits conventionally displayed and manipulated as unsigned integers. Such numerical semantic bases itself upon features of CPU, as well upon use of the memory like an array endorsed by various programming languages.

<span class="mw-page-title-main">HP 2100</span> Mid-1960s 16-bit computer series by Hewlett Packard

The HP 2100 is a series of 16-bit minicomputers that were produced by Hewlett-Packard (HP) from the mid-1960s to early 1990s. Tens of thousands of machines in the series were sold over its twenty-five year lifetime, making HP the fourth largest minicomputer vendor during the 1970s.

<span class="mw-page-title-main">Scientific Data Systems</span> American computer company

Scientific Data Systems (SDS), was an American computer company founded in September 1961 by Max Palevsky, Arthur Rock and Robert Beck, veterans of Packard Bell Corporation and Bendix, along with eleven other computer scientists. SDS was the first to employ silicon transistors, and was an early adopter of integrated circuits in computer design. The company concentrated on larger scientific workload focused machines and sold many machines to NASA during the Space Race. Most machines were both fast and relatively low-priced. The company was sold to Xerox in 1969, but dwindling sales due to the oil crisis of 1973–74 caused Xerox to close the division in 1975 at a loss of hundreds of millions of dollars. During the Xerox years the company was officially Xerox Data Systems (XDS), whose machines were the Xerox 500 series.

The Nord-100 was a 16-bit minicomputer series made by Norsk Data, introduced in 1979. It shipped with the Sintran III operating system, and the architecture was based on, and backward compatible with, the Nord-10 line.

<span class="mw-page-title-main">CDC 160 series</span> Minicomputer

The CDC 160 series was a series of minicomputers built by Control Data Corporation. The CDC 160 and CDC 160-A were 12-bit minicomputers built from 1960 to 1965; the CDC 160G was a 13-bit minicomputer, with an extended version of the CDC 160-A instruction set, and a compatibility mode in which it did not use the 13th bit. The 160 was designed by Seymour Cray - reportedly over a long three-day weekend. It fit into the desk where its operator sat.

<span class="mw-page-title-main">SDS Sigma series</span> Series of third generation computers

The SDS Sigma series is a series of third generation computers that were introduced by Scientific Data Systems of the United States in 1966. The first machines in the series are the 16-bit Sigma 2 and the 32-bit Sigma 7; the Sigma 7 was the first 32-bit computer released by SDS. At the time, the only competition for the Sigma 7 was the IBM 360.

The Bendix G-20 computer was introduced in 1961 by the Bendix Corporation, Computer Division, Los Angeles, California. The G-20 followed the highly successful G-15 vacuum-tube computer. Bendix sold its computer division to Control Data Corporation in 1963, effectively terminating the G-20.

The Universal Time-Sharing System (UTS) is a discontinued operating system for the XDS Sigma series of computers, succeeding Batch Processing Monitor (BPM)/Batch Time-Sharing Monitor (BTM). UTS was announced in 1966, but because of delays did not actually ship until 1971. It was designed to provide multi-programming services for online (interactive) user programs in addition to batch-mode production jobs, symbiont (spooled) I/O, and critical real-time processes. System daemons, called "ghost jobs" were used to run monitor code in user space. The final release, D00, shipped in January, 1973. It was succeeded by the CP-V operating system, which combined UTS with features of the heavily batch-oriented Xerox Operating System (XOS).

The IBM System/360 architecture is the model independent architecture for the entire S/360 line of mainframe computers, including but not limited to the instruction set architecture. The elements of the architecture are documented in the IBM System/360 Principles of Operation and the IBM System/360 I/O Interface Channel to Control Unit Original Equipment Manufacturers' Information manuals.

<span class="mw-page-title-main">IBM System/360 Model 44</span> Specialized IBM computer model from 1960s

The IBM System/360 Model 44 is a specialized member of the IBM System/360 family, with a variant of the System/360 computer architecture, designed for scientific computing, real-time computing, process control and numerical control (NC).

The Xerox 500 series is a discontinued line of computers from Xerox Data Systems (XDS) introduced in the early 1970s as backward-compatible upgrades for the Sigma series machines.

The AN/AYK-14(V) is a family of computers for use in military weapons systems. It is a general-purpose 16-bit microprogrammed computer, intended for airborne vehicles and missions. Its modular design provides for common firmware and support software. It is still in use on Navy fleet aircraft including the F/A-18, and the AV-8B. The AN/AYK-14(V) family of systems is designed to meet MIL-E-5400 (airborne) requirements.

<span class="mw-page-title-main">COP400</span> 4-bit microcontroller family

The COP400 or COP II is a 4-bit microcontroller family introduced in 1977 by National Semiconductor as a follow-on product to their original PMOS COP microcontroller. COP400 family members are complete microcomputers containing internal timing, logic, ROM, RAM, and I/O necessary to implement dedicated controllers. Some COP400 devices were second-sourced by Western Digital as the WD4200 family. In the Soviet Union several COP400 microcontrollers were manufactured as the 1820 series.

References

  1. "Exhibits - Living Computer Museum". www.livingcomputermuseum.org. Retrieved 12 July 2016.
  2. "Sigma9 Sales Guide" (PDF). Retrieved 12 July 2016.
  3. Xerox Sigma 9 Reference Manual. El Segundo, California: Xerox. June 1972.

Further reading