Xu Yue (mathematician)

Last updated

[ citation needed ]Xu Yue was a second-century mathematician born in Donglai, in present-day Shandong province, China. Little is known of his life except that he was a student of Liu Hong, an astronomer, and mathematician in second-century China, and had frequent discussions with the Astronomer-Royal of the Astronomical Bureau. [1]

Contents

Works

Xu Yue wrote a commentary on Nine Chapters on Mathematical Art and a treatise, Notes on Traditions of Arithmetic Methods. The commentary has been, lost but his own work has survived with a commentary from Zhen Luan.

Notes on Traditions of Arithmetic Methods mentions 14 old methods of calculation. This book was a prescribed mathematical text for the Imperial examinations in 656 and became one of The Ten Mathematical Classics (算经十书) in 1084. [2]

Related Research Articles

<span class="mw-page-title-main">History of mathematics</span>

The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars.

<span class="mw-page-title-main">Liu Hui</span> Chinese mathematician and writer

Liu Hui was a Chinese mathematician who published a commentary in 263 CE on Jiu Zhang Suan Shu. He was a descendant of the Marquis of Zixiang of the Eastern Han dynasty and lived in the state of Cao Wei during the Three Kingdoms period of China.

<i>The Nine Chapters on the Mathematical Art</i> Ancient Chinese mathematics text

The Nine Chapters on the Mathematical Art is a Chinese mathematics book, composed by several generations of scholars from the 10th–2nd century BCE, its latest stage being from the 2nd century CE. This book is one of the earliest surviving mathematical texts from China, the first being the Suan shu shu and Zhoubi Suanjing. It lays out an approach to mathematics that centres on finding the most general methods of solving problems, which may be contrasted with the approach common to ancient Greek mathematicians, who tended to deduce propositions from an initial set of axioms.

<span class="mw-page-title-main">Aryabhata</span> Indian mathematician-astronomer

Aryabhata or Aryabhata I was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the Āryabhaṭīya and the Arya-siddhanta.

<span class="mw-page-title-main">Bhāskara II</span> Indian mathematician and astronomer (c.1114–1185)

Bhāskara II, also known as Bhāskarāchārya, and as Bhāskara II to avoid confusion with Bhāskara I, was an Indian mathematician, astronomer and inventor. From verses in his main work, Siddhāṁta Śiromaṇī (सिद्धांतशिरोमणी), it can be inferred that he was born in 1114 in Vijjadavida (Vijjalavida) and living in the Satpuda mountain ranges of Western Ghats, believed to be the town of Patana in Chalisgaon, located in present-day Khandesh region of Maharashtra by scholars. He is the only ancient mathematician who has been immortalized on a monument. In a temple in Maharashtra, an inscription supposedly created by his grandson Changadeva, lists Bhaskaracharya's ancestral lineage for several generations before him as well as two generations after him. Colebrooke who was the first European to translate (1817) Bhaskaracharya II's mathematical classics refers to the family as Maharashtrian Brahmins residing on the banks of the Godavari.

<span class="mw-page-title-main">Suanpan</span> Chinese abacus

The suanpan, also spelled suan pan or souanpan) is an abacus of Chinese origin first described in a 190 CE book of the Eastern Han Dynasty, namely Supplementary Notes on the Art of Figures written by Xu Yue. However, the exact design of this suanpan is not known. Usually, a suanpan is about 20 cm (8 in) tall and it comes in various widths depending on the application. It usually has more than seven rods. There are two beads on each rod in the upper deck and five beads on each rod in the bottom deck. The beads are usually rounded and made of a hardwood. The beads are counted by moving them up or down towards the beam. The suanpan can be reset to the starting position instantly by a quick jerk around the horizontal axis to spin all the beads away from the horizontal beam at the center.

Nārāyaṇa Paṇḍita (1340–1400) was an Indian mathematician. Plofker writes that his texts were the most significant Sanskrit mathematics treatises after those of Bhaskara II, other than the Kerala school. He wrote the Ganita Kaumudi in 1356 about mathematical operations. The work anticipated many developments in combinatorics.

Vatasseri Parameshvara Nambudiri was a major Indian mathematician and astronomer of the Kerala school of astronomy and mathematics founded by Madhava of Sangamagrama. He was also an astrologer. Parameshvara was a proponent of observational astronomy in medieval India and he himself had made a series of eclipse observations to verify the accuracy of the computational methods then in use. Based on his eclipse observations, Parameshvara proposed several corrections to the astronomical parameters which had been in use since the times of Aryabhata. The computational scheme based on the revised set of parameters has come to be known as the Drgganita or Drig system. Parameshvara was also a prolific writer on matters relating to astronomy. At least 25 manuscripts have been identified as being authored by Parameshvara.

<span class="mw-page-title-main">Abu al-Wafa' al-Buzjani</span> Persian mathematician and astronomer (940–998)

Abū al-Wafāʾ Muḥammad ibn Muḥammad ibn Yaḥyā ibn Ismāʿīl ibn al-ʿAbbās al-Būzjānī or Abū al-Wafā Būzhjānī was a Persian mathematician and astronomer who worked in Baghdad. He made important innovations in spherical trigonometry, and his work on arithmetic for businessmen contains the first instance of using negative numbers in a medieval Islamic text.

<span class="mw-page-title-main">Chinese mathematics</span> History of mathematics in China

Mathematics emerged independently in China by the 11th century BCE. The Chinese independently developed a real number system that includes significantly large and negative numbers, more than one numeral system, algebra, geometry, number theory and trigonometry.

Geminus of Rhodes, was a Greek astronomer and mathematician, who flourished in the 1st century BC. An astronomy work of his, the Introduction to the Phenomena, still survives; it was intended as an introductory astronomy book for students. He also wrote a work on mathematics, of which only fragments quoted by later authors survive.

Abu-Abdullah Muhammad ibn Īsa Māhānī was a Persian mathematician and astronomer born in Mahan, and active in Baghdad, Abbasid Caliphate. His known mathematical works included his commentaries on Euclid's Elements, Archimedes' On the Sphere and Cylinder and Menelaus' Sphaerica, as well as two independent treatises. He unsuccessfully tried to solve a problem posed by Archimedes of cutting a sphere into two volumes of a given ratio, which was later solved by 10th century mathematician Abū Ja'far al-Khāzin. His only known surviving work on astronomy was on the calculation of azimuths. He was also known to make astronomical observations, and claimed his estimates of the start times of three consecutive lunar eclipses were accurate to within half an hour.

Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics, important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics.

<span class="mw-page-title-main">Mathematics in the medieval Islamic world</span> Overview of the role of mathematics in the Golden Age of Islam

Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built on Greek mathematics and Indian mathematics. Important progress was made, such as full development of the decimal place-value system to include decimal fractions, the first systematised study of algebra, and advances in geometry and trigonometry.

<span class="mw-page-title-main">Hindu–Arabic numeral system</span> Most common system for writing numbers

The Hindu–Arabic numeral system is a positional base ten numeral system for representing integers; its extension to non-integers is the decimal numeral system, which is presently the most common numeral system.

<span class="mw-page-title-main">Jamshid al-Kashi</span> Persian astronomer and mathematician

Ghiyāth al-Dīn Jamshīd Masʿūd al-Kāshī was an astronomer and mathematician during the reign of Tamerlane.

<span class="mw-page-title-main">Qāḍī Zāda al-Rūmī</span> Islamic mathematician-astronomer

Qāḍī Zāda al-Rūmī, whose actual name was Salah al-Din Musa Pasha, was a Turkish astronomer and mathematician who worked at the observatory in Samarkand. He computed sin 1° to an accuracy of 10−12.

The following is a timeline of key developments of algebra:

A timeline of numerals and arithmetic.

The mathematical field of combinatorics was studied to varying degrees in numerous ancient societies. Its study in Europe dates to the work of Leonardo Fibonacci in the 13th century AD, which introduced Arabian and Indian ideas to the continent. It has continued to be studied in the modern era.

References

  1. Selin, Helaine (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer.
  2. "Xu Yue". MacTutor History of Mathematics. 2003-12-01. Retrieved 2016-12-27.