Y.1731

Last updated
G.8013/Y.1731
Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks
Gigabit LAN Netzwerk Switch (10581106056).jpg
StatusIn force
Year started2006
Latest versionCorrigendum 2 (08/19)
August 2019
Organization ITU-T
Committee ITU-T Study Group 13, ITU-T Study Group 15
Website www.itu.int/rec/T-REC-Y.1731

Y.1731 is an international standard that defines Operations, Administration and Maintenance (OAM) functions and mechanisms for Ethernet-based networks. [1] [2]

Contents

History

The standard was first developed in 2006 by the Standardization Sector of the International Telecommunication Union (ITU-T) in ITU-T Study Group 13, publishing the original version, as well as a revised version in 2008. From 2010 revisions are done in Study Group 15, beginning with an amendment in 2010. Further major revisions followed in 2011, 2013, and most recently 2015 (as well as a number of amendments). [1]

Definitions

Y.1731 defines:

Related Research Articles

<span class="mw-page-title-main">ITU-T</span> Standardization Sector of the ITU

The ITU Telecommunication Standardization Sector (ITU-T) is one of the three sectors of the International Telecommunication Union (ITU). It is responsible for coordinating standards for telecommunications and Information Communication Technology such as X.509 for cybersecurity, Y.3172 and Y.3173 for machine learning, and H.264/MPEG-4 AVC for video compression, between its Member States, Private Sector Members, and Academia Members.

<span class="mw-page-title-main">H.248</span>

The Gateway Control Protocol is an implementation of the media gateway control protocol architecture for providing telecommunication services across a converged internetwork consisting of the traditional public switched telephone network (PSTN) and modern packet networks, such as the Internet. H.248 is the designation of the recommendations developed by the ITU Telecommunication Standardization Sector (ITU-T) and Megaco is a contraction of media gateway control protocol used by the earliest specifications by the Internet Engineering Task Force (IETF). The standard published in March 2013 by ITU-T is entitled H.248.1: Gateway control protocol: Version 3.

<span class="mw-page-title-main">Metro Ethernet</span> Metropolitan area network based on Ethernet standards

A metropolitan-area Ethernet, Ethernet MAN, or metro Ethernet network is a metropolitan area network (MAN) that is based on Ethernet standards. It is commonly used to connect subscribers to a larger service network or the Internet. Businesses can also use metropolitan-area Ethernet to connect their own offices to each other.

IEEE 802.1ag is a standard defined by IEEE. It defines protocols and practices for OAM for paths through 802.1 bridges and local area networks (LANs). It is an amendment to IEEE 802.1Q-2005 and was approved in 2007.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

Ethernet in the first mile (EFM) refers to using one of the Ethernet family of computer network technologies between a telecommunications company and a customer's premises. From the customer's point of view, it is their first mile, although from the access network's point of view it is known as the last mile.

Operations, administration and management or operations, administration and maintenance are the processes, activities, tools, and standards involved with operating, administering, managing and maintaining any system. This commonly applies to telecommunication, computer networks, and computer hardware.

Provider Backbone Bridge Traffic Engineering (PBB-TE) is an approved telecommunications networking standard, IEEE 802.1Qay-2009. PBB-TE adapts Ethernet technology to carrier class transport networks. It is based on the layered VLAN tags and MAC-in-MAC encapsulation defined in IEEE 802.1ah, but it differs from PBB in eliminating flooding, dynamically created forwarding tables, and spanning tree protocols. Compared to PBB and its predecessors, PBB-TE behaves more predictably and its behavior can be more easily controlled by the network operator, at the expense of requiring up-front connection configuration at each bridge along a forwarding path. PBB-TE Operations, Administration, and Management (OAM) is usually based on IEEE 802.1ag. It was initially based on Nortel's Provider Backbone Transport (PBT).

Provider Backbone Bridges is a set of architecture and protocols for routing over a provider's network allowing interconnection of multiple provider bridge networks without losing each customer's individually defined VLANs. It was initially created by Nortel before being submitted to the IEEE 802.1 committee for standardization. The final standard was approved by the IEEE in June 2008 as IEEE 802.1ah-2008 and has been integrated into IEEE 802.1Q-2011.

Ethernet over PDH or EoPDH is one of many techniques that provided Ethernet connectivity over non-Ethernet networks. Specifically, EoPDH is a standardized methodology for transporting native Ethernet frames over the existing telecommunications copper infrastructure by leveraging the established PDH transport technology. EoPDH is one of several Ethernet transport technologies that enables Telecommunication Service Providers to offer "Carrier Ethernet" services. Also commonly used as a means of connecting businesses to a Metro Ethernet network.

T-MPLS or Transport MPLS is a transport network layer technology that uses extensions to a subset of the existing MPLS standards and is designed specifically for application in transport networks. Work to define T-MPLS was started by the ITU-T in February 2006. It was intended specifically as a connection-oriented packet-switched (co-ps) application offering a simpler implementation by removing MPLS features that are not relevant to co-ps applications and adding mechanisms that provide support of critical transport functionality.

Connection-oriented Ethernet refers to the transformation of Ethernet, a connectionless communication system by design, into a connection-oriented system. The aim of connection-oriented Ethernet is to create a networking technology that combines the flexibility and cost-efficiency of Ethernet with the reliability of connection-oriented protocols. Connection-oriented Ethernet is used in commercial carrier grade networks.

<span class="mw-page-title-main">Ethernet over PDH over SONET/SDH</span> Aspect of Ethernet networking

Ethernet over PDH over SONET/SDH (EoPoS) is one of many techniques that provided Ethernet connectivity over non-Ethernet networks. EoPoS is a standardized method for transporting native Ethernet frames over the existing telecommunications optical infrastructure use both the established Plesiochronous Digital Hierarchy (PDH) and Synchronous Digital Hierarchy (SONET/SDH) transport technologies.

Carrier Ethernet is a marketing term for extensions to Ethernet for communications service providers that utilize Ethernet technology in their networks.

Ethernet over Coax (EoC) is a family of technologies that supports the transmission of Ethernet frames over coaxial cable.

In telecommunications, Multiprotocol Label Switching - Transport Profile (MPLS-TP) is a variant of the MPLS protocol that is used in packet switched data networks. MPLS-TP is the product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and PWE3 architectures to support the capabilities and functionalities of a packet transport network.

The 10 Gbit/s Ethernet Passive Optical Network standard, better known as 10G-EPON allows computer network connections over telecommunication provider infrastructure. The standard supports two configurations: symmetric, operating at 10 Gbit/s data rate in both directions, and asymmetric, operating at 10 Gbit/s in the downstream direction and 1 Gbit/s in the upstream direction. It was ratified as IEEE 802.3av standard in 2009. EPON is a type of passive optical network, which is a point-to-multipoint network using passive fiber-optic splitters rather than powered devices for fan-out from hub to customers.

Synchronous Ethernet, also referred as SyncE, is an ITU-T standard for computer networking that facilitates the transference of clock signals over the Ethernet physical layer. This signal can then be made traceable to an external clock.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

<span class="mw-page-title-main">Y.3173</span> ITU-T recommendation

Y.3173 is an ITU-T Recommendation building upon Y.3172 specifying a framework for evaluation intelligence levels of future networks such as 5G (IMT-2020). This includes:

References

  1. 1 2 "Y.1731 : OAM functions and mechanisms for Ethernet based networks". www.itu.int. Archived from the original on 2018-03-24. Retrieved 2019-11-09.
  2. Satapathy, Suresh Chandra; Raju, K. Srujan; Mandal, Jyotsna Kumar; Bhateja, Vikrant (2015-09-10). Proceedings of the Second International Conference on Computer and Communication Technologies: IC3T 2015. Springer. p. 442. ISBN   9788132225263.