Yaesu FT-817

Last updated
FT-817 Yaesu FT-817.jpg
FT-817

The Yaesu FT-817 is one of the smallest MF/HF/VHF/UHF multimode general-coverage amateur radio transceivers. The set is built by the Japanese Vertex Standard Corporation and is sold under the Yaesu brand. [1] [2] With internal battery pack, on board keyer, its all mode/all band capability and flexible antenna, the set is particularly well suited for portable use. The FT-817 is based on a similar circuit architecture as Yaesu's FT-857 and FT-897, so it is a compromise transceiver and incorporates its features to its low price ($670.- at its 2001 release). [3]

Contents

The upgraded FT-817(N)D was launched in 2004. The difference between the two models is the addition of 60 meter band coverage in 5 fixed channels (USA model only), other display lighting options, modifications in the RF stage, the included FNB-85 battery-pack and NC-72B charger.

The FT-817 is a QRP transceiver. [4]

The FT-817(N)D is no longer in production, and has been replaced by the FT-818, which improves on the previous model with an increase of RF output from 5 to 6 Watts, higher capacity battery and the inclusion of a TCXO for better frequency stability. [5] In December 2022 Yaesu announced they were also discontinuing production of the FT-818. [6]


Technical description

CAT interface

A serial port with a wide range of commands is provided. [2]

Circuit description

The following circuit description is an extract from the service manual [7]

RX signals may be input via a front BNC connector or a rear UHF SO-239 connector (Yaesu calls it a type "M" connector) using a relay on the PA unit. The selection has to be made per band (HF, 6, 2 m or 70 cm) using menu selection. The BNC connector is the antenna connector chosen when the relay is bypassed.

A 70cm signal path goes through a high pass filter network, through the RF directional coupler/power detector (not on rx) to a low pass filter to a PIN-diode. In rx mode, these are turned off. The rx signal then passes through a DAN235U; this is a dual diode and when in UHF rx mode, the appropriate diode is turned on, passing the 70 cm signal through and the signal then leaves the PA board. On the MAIN circuit board the 70 cm rx signal enters a DAP236U. This dual diode get its current from the PA unit and when 70 cm rx mode is active one of the diodes is turned on. Rx signal goes through a device consisting of 2 back-to-back diodes providing protection for the receiver's front end. The output of the preamplifier is sent to a helical resonator filter. The output of the filtered and amplified 70 cm path is passed through and coupled into the receive mixer. For 70 cm receive, PIN diode bias is provided to the PA unit, through the MAIN unit and then through an RF-decoupler network, a parallel-output shift register.

A 2m signal goes to a relay and then the signals are diplexed, with 2m and < going to a lo-pass filter. The signal gets diplexed again using a hi-pass filter, separating out the 2 m signal from the HF-6 meter signal path. The rx signal passes through the VHF directional coupler/power detector (not used in rx) to a lo-pass filter and then passes by 2 PIN diodes (both HSU277). These diodes and related components form T/R isolation switches that operate similar to that of the 70 cm front end. Rx signal passes through the half which is not used for 70 cm and then to the RX RF output and is then passes to the MAIN unit. Here the signal enters and then passes through a transformer, along with a varactor and related components and forms an electrically-tuned filter/matching network, the 2 meter preamplifier. The output of the preamplifier goes through 2 electronically tuned transistors. Finally, the output goes through to get to the rx mixer. For 2 m rx, the PIN diode bias is provided by the PA unit to 2 m preamplifier.

Aircraft band Rx path (108-154 MHz) is the same as that of the 2 m path on the PA unit. On the MAIN unit, it goes through the same part as the 2 m signal, but it then goes through the diode portion that was not used for 2 m into an electronically tuned bandpass filter. The output passes through the rx mixer. The PIN diode bias is provided by the PA unit and flows through the primary transistor. On the output, current is provided and goes through the secondary transistor. Both current paths are completed using the aircraft band rx preamplifier.

WFM broadcast band rx path (76-108 MHz) is identical to the 2 m path on the PA unit. On the MAIN unit it passes through the same portion as the 2 m signal, then through a HSC277 diode. This signal then goes into pin 10 of a Sony CXA1611 FM Receiver IC. The IC has a front end, mixer, IF and demodulation and provides received audio. In order to suppress local oscillator leakage and provide a slight amount of image rejection, a varactor and a coil provide one stage of tracking bandpass filtering. Typical for single-chip receivers, the dynamic range of this receiver is poor. When using a large antenna, expect overload/intermod problems.

HF and 6 meter receive path. After relay the signal is diplexed via a low-pass filter. At this point 2 m, aircraft and WFM are diplexed. Continuing the signal passes through a low pass filter, continues through the RF Directional Coupler/Power Detector (not used in rx) through low pass filters selected by relays as appropriate for current rx frequency. The combination of lo- and hi-pass filters provide broadband bandpass filtering to the rx front end. For 6 m the hi-pass filter includes a preamplifier (always used on 6 m rx and not affected by the IPO menu setting). The appropriate high pass filter output is selected with a PIN diode with logic levels. The output from the PIN diodes are routed to the MAIN unit. Here the rx signal is applied to dual PIN diode modules (type DAP236U). One path routes the signal directly between the two modules and the other path passes the signal through a 10 db pad - the pad that is switched in as a menu item. The output is then passed through a simple lo-pass filter to another DAP236U. One of the outputs is applied to a preamplifier and the other is applied to a diode, bypassing the preamplifier. The output of the diode is applied to an IF trap. The purpose of which is to prevent 68.33 MHz energy from the antenna from getting into the 1st IF. The HF receive signal is routed to the receive mixer.

Technical specifications [2]

Accessories [2]

Suitable antenna tuners

Emtech ZM-2 small, lightweight manual Z-match tuner for balanced and unbalanced feedlines

Known weaknesses

Vulnerable final transistors in non-ND model! The 2SK2975 FET's in the final stage are VERY sensitive and can easily be destroyed by high SWR, overheating, overvoltage, or voltage peaks. In the ND model Yaesu (Vertex) replaced the FETs with RD07MVS1 FET's but the problem may still exist. Be aware that the RF stage may remain sensitive to damage. [8]

The internal battery should be removed if the radio is to be stored for an extended period. In the non-ND model, a failing battery can cause the finals to oscillate which destroys the FETs. This was corrected with the ND model though it is still recommended that the internal battery be removed for extended storage to prevent this issue as well as to ensure that there is no possibility of battery leakage which can destroy internal components of the radio.

Related Research Articles

<span class="mw-page-title-main">Superheterodyne receiver</span> Type of radio receiver

A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was long believed to have been invented by US engineer Edwin Armstrong, but after some controversy the earliest patent for the invention is now credited to French radio engineer and radio manufacturer Lucien Lévy. Virtually all modern radio receivers use the superheterodyne principle; except those software-defined radios using direct sampling.

<span class="mw-page-title-main">T2FD antenna</span>

The Tilted Terminated Folded Dipole or Balanced Termination, Folded Dipole (BTFD) - also known as W3HH antenna - is a general-purpose shortwave antenna developed in the late 1940s by the United States Navy. It performs reasonably well over a broad frequency range, without marked dead spots in terms of either frequency, direction, or angle of radiation above the horizon.

<span class="mw-page-title-main">Yaesu (brand)</span> Japanese radio equipment company

Yaesu, founded as Yaesu Musen Co., Ltd. in 1959 by a Japanese radio amateur Sako Hasegawa with call sign JA1MP in the Tokyo neighborhood of Yaesu, is a Japanese brand of commercial and amateur radio equipment.

<span class="mw-page-title-main">Tuner (radio)</span>

A tuner is a subsystem that receives radio frequency (RF) transmissions, such as FM broadcasting, and converts the selected carrier frequency and its associated bandwidth into a fixed frequency that is suitable for further processing, usually because a lower frequency is used on the output. Broadcast FM/AM transmissions usually feed this intermediate frequency (IF) directly into a demodulator that converts the radio signal into audio-frequency signals that can be fed into an amplifier to drive a loudspeaker.

<span class="mw-page-title-main">Braid-breaker</span>

A braid-breaker is a filter that prevents television interference (TVI). In many cases, TVI is caused by a high field strength of a nearby high frequency (HF) transmitter, the aerial down lead plugged into the back of the TV acts as a longwire antenna or as a simple vertical element. The radio frequency (RF) current flowing through the tuner of the TV tends to generate harmonics which then spoil the viewing.

A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.

<span class="mw-page-title-main">Yaesu FT-101</span>

Yaesu FT-101 is a model line of modular amateur radio transceivers, built by the Yaesu Corporation in Japan during the 1970s and 1980s. FT-101 is a set that combines a solid state transmitter, receiver and a tube final amplifier. Its solid state features offer high-performance, low-current characteristics and its tube amplifier provides an almost mismatch-resistant transmitter and tuner stage. FT-101s were made with plug-in circuit boards that could be sent to the dealer or factory for replacement or repair. Until then, modular design was unprecedented in the amateur community. This also explains the fact why so many FT-101s are still in use today. The rig was sold worldwide as Yaesu FT-101 and in Europe as Yaesu FT-101 and as Sommerkamp FT-277. Because of its reliability it earned its nickname "the workhorse".

An EMC problem occurs when one piece of electronic equipment or an electromagnetic system is adversely affected by the operation of another. One example might be breakthrough by the high field strengths produced by a nearby radio transmitter. EMC problems are not always due to defects in the transmitter, and so do not necessarily require improvements in the radio transmitter design, such as reducing its radiated harmonics. It may be that the immunity of the affected equipment is poor due to inadequate shielding, or filtering of sensitive inputs. EMC problems can have a range of effects on equipment, and there are ways to mitigate or eliminate them in practice. Effective EMC mitigation techniques may differ by the type of equipment that malfunctions, and by the nature of the strong radio frequency field.

<span class="mw-page-title-main">Clansman (military radio)</span> Radio Communications System

Clansman is the name of a combat net radio system (CNR) used by the British Army from 1976 to 2010.

<span class="mw-page-title-main">Explorer 49</span> NASA satellite of the Explorer program

Explorer 49 was a NASA 328 kg (723 lb) satellite launched on 10 June 1973, for long wave radio astronomy research. It had four 230 m (750 ft) X-shaped antenna elements, which made it one of the largest spacecraft ever built.

<span class="mw-page-title-main">AN/PRC-150</span> American military radio system

The AN/PRC-150(C) Falcon II Manpack Radio, is a tactical HF-SSB/ VHF-FM manpack radio manufactured by Harris Corporation. It holds an NSA certification for Type 1 encryption.

<span class="mw-page-title-main">Preselector</span> Radio signal filtering device

A preselector is a name for an electronic device that connects between a radio antenna and a radio receiver. The preselector is a band-pass filter that blocks troublesome out-of-tune frequencies from passing through from the antenna into the radio receiver that otherwise would be directly connected to the antenna.

<span class="mw-page-title-main">SCR-300</span>

The SCR-300 was a portable radio transceiver used by US Signal Corps in World War II. This backpack-mounted unit was the first radio to be nicknamed a "walkie talkie".

<span class="mw-page-title-main">Yaesu FT-7(B)</span>

.

The Yaesu FT-ONE is an all-mode solid state general coverage HF amateur radio (HAM) transceiver. The use of FM required an optional FM board to be installed. The unit was designed for fixed, portable or mobile operation, although the size and weight (17 kg) made it more suitable for fixed use. The FT-ONE was built by the Japanese Yaesu-Musen Corporation from 1982 to 1986. At its release, the FT-ONE was launched as the successor to the FT-902 and as the new Yaesu top-of-the-line transceiver. The FT-ONE was not only Yaesu's first fully synthesized, computer-controlled amateur band transceiver but it was also the first transceiver with a general coverage receiver. The FT-ONE was sold in the U.S., Asian and European markets. It was released in 1982 with a list price of $2800.00 US.

The Yaesu FT-77 is a transceiver to be used in the 3,5 – 29,9 MHz shortwave radio amateur segment. This means the coverage of the 80-40-30-20-15-17-12 and 10 meter HF bands.

The Yaesu VX series is a line of two sequences of compact amateur radio handheld transceivers produced by Yaesu. There is a line of ultra-compact lower-power dual-band transceivers that started with the VX-1R and was later updated with the VX-2R and VX-3R. There is also a line of 5W tri-band transceivers that started with the VX-5R and was later updated with the VX-6R, VX-7R and VX-8R.

<span class="mw-page-title-main">Yaesu FT-891</span> Amateur radio transceiver

The Yaesu FT-891 is a HF + 6 meters all mode mobile amateur radio transceiver. The FT-891 was first announced to the public by Yaesu at the 2016 Dayton Hamvention. The radio has 100 watts output on CW, SSB, and FM modulations and 25 watts of output in AM. As a mobile transceiver the FT-891 is well suited for mobile installation in vehicles, and weighing less than 5 pounds it is often used for field activations such as Summits on the Air, and Parks on the Air. The radio has been praised for its noise reduction and sensitive receiver. Common criticisms of the radio include it's many menus that are difficult to navigate with its small screen, the lack of VHF/UHF capabilities, and lack of an internal antenna tuner. Although the radio lacks an internal sound card it still has input and output jacks for audio and be controlled over a USB cable allowing the radio to use digital modes such as WinLink, PSK31 and FT8.

References

  1. Yaesu FT 817 http://www.yaesu.com/indexVS.cfm?cmd=DisplayProducts&ProdCatID=102&encProdID=06014CD0AFA0702B25B12AB4DC9C0D27
  2. 1 2 3 4 Yaesu FT-817 Operating Manual
  3. Testbericht Yaesu FT 817, Funkamateur http://www.funkamateur.de/testberichte.html?file=tl_files/downloads/testberichte/frei/FT-817_test.pdf
  4. Review on eham http://www.eham.net/reviews/detail/1184
  5. "Welcome to Yaesu.com". www.yaesu.com. Retrieved 2022-12-25.
  6. Yaesu Update Dec 28th, 2022 - End of Production FTM-400 series and FT-818 series , retrieved 2022-12-30
  7. Yaesu FT-817 Service Manual
  8. Blown finals: http://pages.cs.wisc.edu/~timc/e/ft817.html