In mathematics, Yau's conjecture on the first eigenvalue is, as of 2018, an unsolved conjecture proposed by Shing-Tung Yau in 1982. It asks:
Is it true that the first eigenvalue for the Laplace–Beltrami operator on an embedded minimal hypersurface of is ?
If true, it will imply that the area of embedded minimal hypersurfaces in will have an upper bound depending only on the genus.
Some possible reformulations are as follows:
The first eigenvalue of every closed embedded minimal hypersurface in the unit sphere (1) is
The first eigenvalue of an embedded compact minimal hypersurface of the standard (n + 1)-sphere with sectional curvature 1 is
If is the unit (n + 1)-sphere with its standard round metric, then the first Laplacian eigenvalue on a closed embedded minimal hypersurface is
The Yau's conjecture is verified for several special cases, but still open in general.
Shiing-Shen Chern conjectured that a closed, minimally immersed hypersurface in (1), whose second fundamental form has constant length, is isoparametric. If true, it would have established the Yau's conjecture for the minimal hypersurface whose second fundamental form has constant length.
A possible generalization of the Yau's conjecture:
Let be a closed minimal submanifold in the unit sphere (1) with dimension of satisfying . Is it true that the first eigenvalue of is ?
In the mathematical field of geometric topology, the Poincaré conjecture is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
Shing-Tung Yau is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University.
In mathematics, the Chern theorem states that the Euler–Poincaré characteristic of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial of its curvature form.
In mathematics, the mean curvature of a surface is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.
Richard Streit Hamilton is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology. Grigori Perelman built upon Hamilton's results to prove the conjectures, and was awarded a Millennium Prize for his work. However, Perelman declined the award, regarding Hamilton's contribution as being equal to his own.
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.
In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.
Shiu-Yuen Cheng (鄭紹遠) is a Hong Kong mathematician. He is currently the Chair Professor of Mathematics at the Hong Kong University of Science and Technology. Cheng received his Ph.D. in 1974, under the supervision of Shiing-Shen Chern, from University of California at Berkeley. Cheng then spent some years as a post-doctoral fellow and assistant professor at Princeton University and the State University of New York at Stony Brook. Then he became a full professor at University of California at Los Angeles. Cheng chaired the Mathematics departments of both the Chinese University of Hong Kong and the Hong Kong University of Science and Technology in the 1990s. In 2004, he became the Dean of Science at HKUST. In 2012, he became a fellow of the American Mathematical Society.
In mathematics, Hopf conjecture may refer to one of several conjectural statements from differential geometry and topology attributed to Heinz Hopf.
In the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by Eugenio Calabi. It was proved by Shing-Tung Yau, who received the Fields Medal and Oswald Veblen Prize in part for his proof. His work, principally an analysis of an elliptic partial differential equation known as the complex Monge–Ampère equation, was an influential early result in the field of geometric analysis.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.
The Geometry Festival is an annual mathematics conference held in the United States.
Robert "Bob" Osserman was an American mathematician who worked in geometry. He is specially remembered for his work on the theory of minimal surfaces.
Shoshichi Kobayashi was a Japanese mathematician. He was the eldest brother of electrical engineer and computer scientist Hisashi Kobayashi. His research interests were in Riemannian and complex manifolds, transformation groups of geometric structures, and Lie algebras.
Gerhard Huisken is a German mathematician whose research concerns differential geometry and partial differential equations. He is known for foundational contributions to the theory of the mean curvature flow, including Huisken's monotonicity formula, which is named after him. With Tom Ilmanen, he proved a version of the Riemannian Penrose inequality, which is a special case of the more general Penrose conjecture in general relativity.
In mathematics, the Almgren–Pitts min-max theory is an analogue of Morse theory for hypersurfaces.
The spherical Bernstein's problem is a possible generalization of the original Bernstein's problem in the field of global differential geometry, first proposed by Shiing-Shen Chern in 1969, and then later in 1970, during his plenary address at the International Congress of Mathematicians in Nice.
Chern's conjecture for hypersurfaces in spheres, unsolved as of 2018, is a conjecture proposed by Chern in the field of differential geometry. It originates from the Chern's unanswered question:
Consider closed minimal submanifolds immersed in the unit sphere with second fundamental form of constant length whose square is denoted by . Is the set of values for discrete? What is the infimum of these values of ?
In the mathematical fields of differential geometry and geometric analysis, the Gauss curvature flow is a geometric flow for oriented hypersurfaces of Riemannian manifolds. In the case of curves in a two-dimensional manifold, it is identical with the curve shortening flow. The mean curvature flow is a different geometric flow which also has the curve shortening flow as a special case.