ZNF837

Last updated

ZNF837 is a protein that in humans is encoded by the ZNF837 gene, [1] is located at 19q13.431 with minus strand orientation. [2] ZNF837 protein is characterized as a C2H2-type zinc finger protein. [3]

Contents

Homology and Evolution

Unrooted phylogenetic tree based on an alignment of the protein sequence of ZNF837 homologs. ZNF837 Homology Unrooted Tree with key.JPG
Unrooted phylogenetic tree based on an alignment of the protein sequence of ZNF837 homologs.

The human ZNF837 has homologs present in many mammals and seen more distantly. All homologs are chordates. All contain both COG5048 and Zf-C2H2_2 domains. The areas that these domains are found contain the highest conservation rates. In humans, 5 Zf-H2C2 double domains [4] and 2 COG5048 domains [5] are present.

The protein sequence is fast evolving among these homologs.

ZNF837 homologs percent similarity to the human protein graphed against the date that it diverged from Homo sapiens. Also graphed is the Cytochrome C, a slow evolving protein, and Fibrinogen, a fast evolving protein, to determine the speed of the ZNF837 protein's evolution ZNF837, homolog graph.jpg
ZNF837 homologs percent similarity to the human protein graphed against the date that it diverged from Homo sapiens. Also graphed is the Cytochrome C, a slow evolving protein, and Fibrinogen, a fast evolving protein, to determine the speed of the ZNF837 protein's evolution

ZNF837 has numerous paralogs in humans, all of which are zinc finger proteins.

Human ZNF837

In humans, there are no other aliases, and its neighboring genes are MIR4754, A1BG, and RPS5. ZNF837 mRNA that is made into function protein contains 1921 nucleotides, of which 222-1817 are translated to a protein containing 3 exons. The protein consists of 531 amino acids [6] with a weight of 58,078 Da with an isoelectric point at 9.525. [7]

Gene Variants

There are 2 transcript variants. Transcript variant 1, 2050 base pairs in length, is non-coding due to a nonsense-mediated mRNA decay . [8] Transcript variant 2 is made into the functional protein due to an alternate splice site [9]

Post Translational

It is predicted via high conservation to have 4 phosphorylation sites [10] at T386, T455, S460, Y503. [11] The internal structure is includes combination of alpha helices, beta sheets and mainly random coils. [12]

Structure of part of ZNF837 as predicted by Phyre2. The structure matches with 99.9% confidence to 37% of the sequence. Phyre2 Predicted Structure of ZNF837.jpg
Structure of part of ZNF837 as predicted by Phyre2. The structure matches with 99.9% confidence to 37% of the sequence.

Expression

ZNF837 has observed in the pancreas, liver, uterus, and muscle cells. In all cases concentration is low. [13] However, the expression of ZNF837 is seen to have the most impact is when looking at normal vs diseased state. There is a consistent change that is able to be seen.

Related Research Articles

Chromosome 3 human chromosome

Chromosome 3 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 3 spans almost 200 million base pairs and represents about 6.5 percent of the total DNA in cells.

Chromosome 7 human chromosome

Chromosome 7 is one of the 23 pairs of chromosomes in humans, who normally have two copies of this chromosome. Chromosome 7 spans about 159 million base pairs and represents between 5 and 5.5 percent of the total DNA in cells.

Chromosome 8 Human chromosome

Chromosome 8 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 8 spans about 145 million base pairs and represents between 4.5 and 5.0% of the total DNA in cells.

Chromosome 9 Human chromosome

Chromosome 9 is one of the 23 pairs of chromosomes in humans. Humans normally have two copies of this chromosome, as they normally do with all chromosomes. Chromosome 9 spans about 138 million base pairs of nucleic acids and represents between 4.0 and 4.5% of the total DNA in cells.

Chromosome 10 human chromosome

Chromosome 10 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 10 spans about 133 million base pairs and represents between 4 and 4.5 percent of the total DNA in cells.

Chromosome 12 human chromosome

Chromosome 12 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 12 spans about 133 million base pairs and represents between 4 and 4.5 percent of the total DNA in cells.

Chromosome 16 human chromosome

Chromosome 16 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 16 spans about 90 million base pairs and represents just under 3% of the total DNA in cells.

Chromosome 18 human chromosome

Chromosome 18 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 18 spans about 80 million base pairs and represents about 2.5 percent of the total DNA in cells.

Chromosome 19 human chromosome

Chromosome 19 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 19 spans more than 58.6 million base pairs, the building material of DNA.

Chromosome 20 human chromosome

Chromosome 20 is one of the 23 pairs of chromosomes in humans. Chromosome 20 spans around 63 million base pairs and represents between 2 and 2.5 percent of the total DNA in cells. Chromosome 20 was fully sequenced in 2001 and was reported to contain over 59 million base pairs. Since then, due to sequencing improvements and fixes, the length of chromosome 20 has been updated to just over 63 million base pairs.

SUHW4

Zinc finger protein 280D, also known as Suppressor Of Hairy Wing Homolog 4, SUWH4, Zinc Finger Protein 634, ZNF634, or KIAA1584, is a protein that in humans is encoded by the ZNF280D gene located on chromosome 15q21.3.

WWC2

WW and C2 domain containing 2 (WWC2) is a protein that in humans is encoded by the WWC2 gene (4q35.1). Though function of WWC2 remains unknown, it has been predicted that WWC2 may play a role in cancer.

TMEM143 is a protein that in humans is encoded by TMEM143 gene. TMEM143, a dual-pass protein, is predicted to reside in the mitochondria and high expression has been found in both human skeletal muscle and the heart. Interaction with other proteins indicate that TMEM143 could potentially play a role in tumor suppression/expression and cancer regulation.

Ring Finger Protein 113A is a protein that in humans is encoded by the RNF113A gene. It is found in humans on the X Chromosome. RNF113A contains two highly conserved domains, the RING finger domain and Zinc finger domain. RING finger domains have been associated with some tumor suppressors and cytokine receptor-associated molecules. These domains also act in DNA repair and mediating protein-protein interactions. Aliases of RNF113A across taxa include RNF113, CWC24, and ZNF183.

Zinc finger protein 226

Zinc finger protein 226 is a protein that in humans is encoded by the ZNF226 gene.

Uncharacterized protein Chromosome 16 Open Reading Frame 71 is a protein in humans, encoded by the C16orf71 gene. The gene is expressed in epithelial tissue of the respiratory system, adipose tissue, and the testes. Predicted associated biological processes of the gene include regulation of the cell cycle, cell proliferation, apoptosis, and cell differentiation in those tissue types. 1357 bp of the gene are antisense to spliced genes ZNF500 and ANKS3, indicating the possibility of regulated alternate expression.

Transmembrane protein 255A

Transmembrane protein 255A is a protein that is encoded by the TMEM255A gene. TMEM255A is often referred to as family with sequence similarity 70, member A (FAM70A). The TMEM255A protein is transmembrane and is predicted to be located the nuclear envelope of eukaryote organisms.

C17orf50

Uncharacterized protein C17orf50 is a protein which in humans is encoded by the C17orf50 gene.

Zinc Finger Protein 800 or ZNF800 is a protein that in humans is encoded by the ZNF800 gene. The specific function of ZNF800 is not yet well understood by the scientific community.

ZNF337

ZNF337, also known as zinc finger protein 337, is a protein that in humans is encoded by the ZNF337 gene. The ZNF337 gene is located on human chromosome 20 (20p11.21). Its protein contains 751 amino acids, has a 4,237 base pair mRNA and contains 6 exons total. In addition, alternative splicing results in multiple transcript variants. The ZNF337 gene encodes a zinc finger domain containing protein, however, this gene/protein is not yet well understood by the scientific community. The function of this gene has been proposed to participate in a processes such as the regulation of transcription (DNA-dependent), and proteins are expected to have molecular functions such as DNA binding, metal ion binding, zinc ion binding, which would be further localized in various subcellular locations. While there are no commonly associated or known aliases, an important paralog of this gene is ZNF875

References

  1. Strausberg, RL; Feingold, EA; Grouse, LH; et al. (December 2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proceedings of the National Academy of Sciences. 99 (26): 16899–16903. Bibcode:2002PNAS...9916899M. doi: 10.1073/pnas.242603899 . PMC   139241 . PMID   12477932.
  2. "ZNF837 zinc finger protein 837 [Homo sapiens (human)] - Gene - NCBI".
  3. Pieler, T.; Bellefroid, E. (1994). "Perspectives on zinc finger protein function and evolution - an update". Molecular Biology Reports. 20 (1): 1–8. doi:10.1007/bf00999848. PMID   7531280. S2CID   22962225.
  4. Iuchi, S (2001). "Three classes of C2H2 zinc finger proteins". Cellular and Molecular Life Sciences. 58 (4): 625–635. doi:10.1007/pl00000885. PMID   11361095. S2CID   6522993.
  5. "NCBI Conserved Domain Search".
  6. "ZNF837 protein [Homo sapiens] - Protein - NCBI".
  7. "ZNF837 (human)".
  8. Maquat, Lynne E (2002). "Nonsense-mediated mRNA decay". Current Biology. 12 (6): R196–R197. doi: 10.1016/S0960-9822(02)00747-9 . PMID   11909543.
  9. "ZNF837 (human)".
  10. Blom, Nikolaj; Gammeltoft, Steen; Brunak, Søren (1999). "Sequence and structure-based prediction of eukaryotic protein phosphorylation sites 1". Journal of Molecular Biology. 294 (5): 1351–1362. doi:10.1006/jmbi.1999.3310. PMID   10600390.
  11. Guo, Ailan et al. Serine, Threonine, and Tyrosine Phosphorylation Sites. Patent US20110045603 A1. 20 Apr. 2010. Print.
  12. Kelley, LA; Sternberg, MJE (2009). "Protein structure prediction on the Web: a case study using the Phyre server". Nature Protocols. 4 (3): 363–371. doi:10.1038/nprot.2009.2. hdl: 10044/1/18157 . PMID   19247286. S2CID   12497300.
  13. "EST Profile - Hs.222236".