Zener ratio

Last updated

The Zener ratio is a dimensionless number that is used to quantify the anisotropy for cubic crystals. It is sometimes referred as anisotropy ratio and is named after Clarence Zener. [1] Conceptually, it quantifies how far a material is from being isotropic (where the value of 1 means an isotropic material).

Contents

Its mathematical definition is [1] [2]

where refers to Elastic constants in Voigt notation.

Cubic materials

Cubic materials are special orthotropic materials that are invariant with respect to 90° rotations with respect to the principal axes, i.e., the material is the same along its principal axes. Due to these additional symmetries the stiffness tensor can be written with just three different material properties like

The inverse of this matrix is commonly written as [3]

where is the Young's modulus, is the shear modulus, and is the Poisson's ratio. Therefore, we can think of the ratio as the relation between the shear modulus for the cubic material and its (isotropic) equivalent:

Universal Elastic Anisotropy Index

The Zener ratio is only applicable to cubic crystals. To overcome this limitation, a 'Universal Elastic Anisotropy Index (AU)' [4] was formulated from variational principles of elasticity and tensor algebra. The AU is now used to quantify the anisotropy of elastic crystals of all classes.

Tensorial Anisotropy Index

The Tensorial Anisotropy Index AT [5] extends the Zener ratio for fully anisotropic materials and overcomes the limitation of the AU that is designed for materials exhibiting internal symmetries of elastic crystals, which is not always observed in multi-component composites. It takes into consideration all the 21 coefficients of the fully anisotropic stiffness tensor and covers the directional differences among the stiffness tensor groups.

It is composed of two major parts and , the former referring to components existing in cubic tensor and the latter in anisotropic tensor so that This first component includes the modified Zener ratio and additionally accounts for directional differences in the material, which exist in orthotropic material, for instance. The second component of this index covers the influence of stiffness coefficients that are nonzero only for non-cubic materials and remains zero otherwise.

where is the coefficient of variation for each stiffness group accounting for directional differences of material stiffness, i.e. In cubic materials each stiffness component in groups 1-3 has equal value and thus this expression reduces directly to Zener ratio for cubic materials.

The second component of this index is non-zero for complex materials or composites with only few or no symmetries in their internal structure. In such cases the remaining stiffness coefficients joined in three groups are not null

See also

Related Research Articles

<span class="mw-page-title-main">Anisotropy</span> In geometry, property of being directionally dependent

Anisotropy is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties.

<span class="mw-page-title-main">Composite material</span> Material made from a combination of three or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

<span class="mw-page-title-main">Poisson's ratio</span> Measure of material deformation perpendicular to loading

In materials science and solid mechanics, Poisson's ratio (nu) is a measure of the Poisson effect, the deformation of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2–0.3. The ratio is named after the French mathematician and physicist Siméon Poisson.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Shear modulus</span> Ratio of shear stress to shear strain

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain:

<span class="mw-page-title-main">Transverse isotropy</span>

A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials. In geophysics, vertically transverse isotropy (VTI) is also known as radial anisotropy.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

<span class="mw-page-title-main">Simple shear</span> Translation which preserves parallelism

Simple shear is a deformation in which parallel planes in a material remain parallel and maintain a constant distance, while translating relative to each other.

In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.

<span class="mw-page-title-main">Orthotropic material</span>

In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational symmetry. These directional differences in strength can be quantified with Hankinson's equation.

Seismic anisotropy is the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth.

<span class="mw-page-title-main">Yield surface</span>

A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.

Tribimaximal mixing is a specific postulated form for the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) lepton mixing matrix U. Tribimaximal mixing is defined by a particular choice of the matrix of moduli-squared of the elements of the PMNS matrix as follows:

<span class="mw-page-title-main">Spinodal decomposition</span> Mechanism of spontaneous phase separation

Spinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases. Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separation via decomposition does not require the nucleation events resulting from thermodynamic fluctuations, which normally trigger phase separation.

In linear elasticity, the equations describing the deformation of an elastic body subject only to surface forces on the boundary are the equilibrium equation:

<span class="mw-page-title-main">Deformation (physics)</span> Transformation of a body from a reference configuration to a current configuration

In physics and continuum mechanics, deformation is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.

<span class="mw-page-title-main">Plate theory</span>

In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. The typical thickness to width ratio of a plate structure is less than 0.1. A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.

<span class="mw-page-title-main">Kirchhoff–Love plate theory</span>

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.

<span class="mw-page-title-main">Uflyand-Mindlin plate theory</span>

The Uflyand-Mindlin theory of vibrating plates is an extension of Kirchhoff–Love plate theory that takes into account shear deformations through-the-thickness of a plate. The theory was proposed in 1948 by Yakov Solomonovich Uflyand (1916-1991) and in 1951 by Raymond Mindlin with Mindlin making reference to Uflyand's work. Hence, this theory has to be referred to as Uflyand-Mindlin plate theory, as is done in the handbook by Elishakoff, and in papers by Andronov, Elishakoff, Hache and Challamel, Loktev, Rossikhin and Shitikova and Wojnar. In 1994, Elishakoff suggested to neglect the fourth-order time derivative in Uflyand-Mindlin equations. A similar, but not identical, theory in static setting, had been proposed earlier by Eric Reissner in 1945. Both theories are intended for thick plates in which the normal to the mid-surface remains straight but not necessarily perpendicular to the mid-surface. The Uflyand-Mindlin theory is used to calculate the deformations and stresses in a plate whose thickness is of the order of one tenth the planar dimensions while the Kirchhoff–Love theory is applicable to thinner plates.

References

  1. 1 2 Z. Li and C. Bradt (July 1987). "The single-crystal elastic constants of cubic (3C) SiC to 1000°C". Journal of Materials Science. 22 (7): 2557–2559. doi:10.1007/BF01082145. S2CID   135637447.
  2. L. B. Freund; S. Suresh (2004). Thin Film Materials Stress, Defect Formation and Surface Evolution. Cambridge University Press.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Boresi, A. P, Schmidt, R. J. and Sidebottom, O. M., 1993, Advanced Mechanics of Materials, Wiley.
  4. Ranganathan, S.I.; Ostoja-Starzewski, M. (2008). "Universal Elastic Anisotropy Index". Physical Review Letters. 101 (5): 055504–1–4. doi:10.1103/physrevlett.101.055504. PMID   18764407.
  5. Sokołowski, Damian; Kamiński, Marcin (2018-09-01). "Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects". Acta Mechanica. 229 (9): 3727–3765. doi: 10.1007/s00707-018-2174-7 . ISSN   1619-6937.