Zwanzig projection operator

Last updated

The Zwanzig projection operator is a mathematical device used in statistical mechanics. [1] This projection operator acts in the linear space of phase space functions and projects onto the linear subspace of "slow" phase space functions. It was introduced by Robert Zwanzig to derive a generic master equation. It is mostly used in this or similar context in a formal way to derive equations of motion for some "slow" collective variables. [2]

Contents

Slow variables and scalar product

The Zwanzig projection operator operates on functions in the -dimensional phase space of point particles with coordinates and momenta . A special subset of these functions is an enumerable set of "slow variables" . Candidates for some of these variables might be the long-wavelength Fourier components of the mass density and the long-wavelength Fourier components of the momentum density with the wave vector identified with . The Zwanzig projection operator relies on these functions but does not tell how to find the slow variables of a given Hamiltonian .

A scalar product [3] between two arbitrary phase space functions and is defined by the equilibrium correlation

where

denotes the microcanonical equilibrium distribution. "Fast" variables, by definition, are orthogonal to all functions of under this scalar product. This definition states that fluctuations of fast and slow variables are uncorrelated, and according to the ergodic hypothesis this also is true for time averages. If a generic function is correlated with some slow variables, then one may subtract functions of slow variables until there remains the uncorrelated fast part of . The product of a slow and a fast variable is a fast variable.

The projection operator

Consider the continuous set of functions

with constant. Any phase space function depending on only through is a function of the , namely

A generic phase space function decomposes according to

where is the fast part of . To get an expression for the slow part of take the scalar product with the slow function ,

This gives an expression for , and thus for the operator projecting an arbitrary function to its "slow" part depending on only through ,

This expression agrees with the expression given by Zwanzig, [1] except that Zwanzig subsumes in the slow variables. The Zwanzig projection operator fulfills and . The fast part of is . Functions of slow variables and in particular products of slow variables are slow variables. The space of slow variables thus is an algebra. The algebra in general is not closed under the Poisson bracket, including the Poisson bracket with the Hamiltonian.

Connection with Liouville and Master equation

The ultimate justification for the definition of as given above is that it allows to derive a master equation for the time dependent probability distribution of the slow variables (or Langevin equations for the slow variables themselves).

To sketch the typical steps, let denote the time-dependent probability distribution in phase space. The phase space density (as well as ) is a solution of the Liouville equation

The crucial step then is to write , and to project the Liouville equation onto the slow and the fast subspace, [1]

Solving the second equation for and inserting into the first equation gives a closed equation for (see Nakajima–Zwanzig equation). The latter equation finally gives an equation for where denotes the equilibrium distribution of the slow variables.

Nonlinear Langevin equations

The starting point for the standard derivation of a Langevin equation is the identity , where projects onto the fast subspace. Consider discrete small time steps with evolution operator , where is the Liouville operator. The goal is to express in terms of and . The motivation is that is a functional of slow variables and that generates expressions which are fast variables at every time step. The expectation is that fast variables isolated in this way can be represented by some model data, for instance by a Gaussian white noise. The decomposition is achieved by multiplying from the left with , except for the last term, which is multiplied with . Iteration gives

The last line can also be proved by induction. Assuming and performing the limit directly leads to the operator identity of Kawasaki [2]

A generic Langevin equation is obtained by applying this equation to the time derivative of a slow variable , ,

Here is the fluctuating force (it only depends on fast variables). Mode coupling term and damping term are functionals of and and can be simplified considerably. [1] [2] [4]

Discrete set of functions, relation to the Mori projection operator

Instead of expanding the slow part of in the continuous set of functions one also might use some enumerable set of functions . If these functions constitute a complete orthonormal function set then the projection operator simply reads

A special choice for are orthonormalized linear combinations of the slow variables . This leads to the Mori projection operator. [3] However, the set of linear functions is not complete, and the orthogonal variables are not fast or random if nonlinearity in comes into play.

See also

Related Research Articles

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.

In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation, master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems. It generalizes the Schrödinger equation to open quantum systems; that is, systems in contacts with their surroundings. The resulting dynamics is no longer unitary, but still satisfies the property of being trace-preserving and completely positive for any initial condition.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mathematics, the Marcinkiewicz interpolation theorem, discovered by Józef Marcinkiewicz, is a result bounding the norms of non-linear operators acting on Lp spaces.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

A quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states. Indeed, quasiprobability distributions also have regions of negative probability density, counterintuitively, contradicting the first axiom. Quasiprobability distributions arise naturally in the study of quantum mechanics when treated in phase space formulation, commonly used in quantum optics, time-frequency analysis, and elsewhere.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In numerical methods, total variation diminishing (TVD) is a property of certain discretization schemes used to solve hyperbolic partial differential equations. The most notable application of this method is in computational fluid dynamics. The concept of TVD was introduced by Ami Harten.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In physics, the Green's function for the Laplacian in three variables is used to describe the response of a particular type of physical system to a point source. In particular, this Green's function arises in systems that can be described by Poisson's equation, a partial differential equation (PDE) of the form

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

In premixed turbulent combustion, Bray–Moss–Libby (BML) model is a closure model for a scalar field, built on the assumption that the reaction sheet is infinitely thin compared with the turbulent scales, so that the scalar can be found either at the state of burnt gas or unburnt gas. The model is named after Kenneth Bray, J. B. Moss and Paul A. Libby.

The porous medium equation, also called the nonlinear heat equation, is a nonlinear partial differential equation taking the form:

References

  1. 1 2 3 4 Zwanzig, Robert (1961). "Memory Effects in Irreversible Thermodynamics". Phys. Rev. 124 (4): 983–992. Bibcode:1961PhRv..124..983Z. doi:10.1103/physrev.124.983.
  2. 1 2 3 Kawasaki, K. (1973). "Simple derivations of generalized linear and nonlinear Langevin equations". J. Phys. A: Math. Nucl. Gen. 6 (9): 1289–1295. Bibcode:1973JPhA....6.1289K. doi:10.1088/0305-4470/6/9/004.
  3. 1 2 Mori, H. (1965). "Transport, Collective Motion, and Brownian Motion". Prog. Theor. Phys. 33 (3): 423–455. Bibcode:1965PThPh..33..423M. doi: 10.1143/ptp.33.423 .
  4. Gunton, J.D. (1979). "Mode coupling theory in relation to the dynamical renormalization group method". Dynamical Critical Phenomena and Related Topics. Lecture Notes in Physics. Vol. 104. pp. 1–24. Bibcode:1979LNP...104....1G. doi:10.1007/3-540-09523-3_1. ISBN   978-3-540-09523-1.