1,4-Butanediol diglycidyl ether

Last updated
1,4-Butanediol diglycidyl ether
1,4-bis(2,3-epoxypropoxy)butane.svg
Names
IUPAC name
2-[4-(Oxiran-2-ylmethoxy)butoxymethyl]oxirane
Other names
    • 1,4-Bis(2,3-epoxypropoxy)butane
    • (Tetramethylenebis(oxymethylene))dioxirane
    • 1,4-Bis(2,3-epoxypropyloxy)butane
    • 1,4-Bis(glycidyloxy)butane
    • 1,4-Bis(oxiranylmethyloxy)butane
    • 1,4-Butane diglycidyl ether
    • 1,4-Butanediol diglycidyl ether
    • 1,4-Diglycidyloxybutane
    • Butane-1:4-diol diglycidyl ether
    • Butanediol diglycidyl ether
    • Tetramethylene glycol diglycidyl ether
    • 2,2'-(1,4-Butanediylbis(oxymethylene)bisoxirane)
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.017.611 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 219-371-7
KEGG
PubChem CID
  • InChI=1S/C10H18O4/c1(3-11-5-9-7-13-9)2-4-12-6-10-8-14-10/h9-10H,1-8H2
    Key: SHKUUQIDMUMQQK-UHFFFAOYSA-N
  • C1C(O1)COCCCCOCC2CO2
Properties
C10H18O4
Molar mass 202.250 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. [1] Its main use is in modifying epoxy resins especially viscosity reduction. [2]

Contents

It is REACH registered. [3] The IUPAC name is 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane.

Synthesis

1,4-Butanediol and epichlorohydrin are reacted in the presence of a Lewis acid as catalyst to form a halohydrin: each hydroxyl group of the diol reacts with an epoxide on epichlorohydrin. This process is followed by washing with sodium hydroxide to re-form the epoxide rings in dehydrochlorination reaction. [4] One of the quality control tests would involve measuring the Epoxy value by determination of the epoxy equivalent weight.

Uses

A key use is modifying the viscosity and properties of epoxy resins [5] which may then be formulated into CASE applications: Coatings, [6] Adhesives, Sealants, Elastomers, composite materials, fillers, putties, plasters, modelling clay and semiconductors. It also has a number of medical applications. [7] [8] [9] The molecule is also used to synthesize other molecules. [10] [11] As an Epoxy modifier it is classed as an epoxy reactive diluent.The use of the diluent does effect mechanical properties and microstructure of epoxy resins. [12] [13]

Toxicity

The toxicity is fairly well known and understood and is rated as a severe skin and eye irritant. Contact dermatitis is also possible. [14] [15] [16]

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Bisphenol A diglycidyl ether</span> Chemical compound

Bisphenol A diglycidyl ether is an organic compound and is a liquid epoxy resin. The compound is a colorless viscous liquid. It is a key component of many epoxy resin formulations. Addition of further Bisphenol A and a catalyst and heat can produce Bisphenol A glycidyl ether epoxy resins of higher molecular weight that are solid.

<span class="mw-page-title-main">Cyclohexanedimethanol</span> Chemical compound

Cyclohexanedimethanol (CHDM) is a mixture of isomeric organic compounds with formula C6H10(CH2OH)2. It is a colorless low-melting solid used in the production of polyester resins. Commercial samples consist of a mixture of cis and trans isomers. It is a di-substituted derivative of cyclohexane and is classified as a diol, meaning that it has two OH functional groups. Commercial CHDM typically has a cis/trans ratio of 30:70.

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

<span class="mw-page-title-main">Reactive diluent</span>

Reactive diluents are substances which reduce the viscosity of a lacquer or resin for processing and become part of the lacquer or coating during its subsequent curing via copolymerization. A non-reactive diluent would be a solvent or plasticizer.

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 an industrial chemical used to reduce the viscosity of epoxy resins. These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. It has the formula C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane, and the CAS number 14228-73-0. It is It is REACH registered in Europe. It is an industrial chemical and a key use is in the reduction of viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12 and the CAS number 14228-73-0. The IUPAC name is 2,3-bis[12-(oxiran-2-ylmethoxy)octadec-9-enoyloxy]propyl 12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">C12–C13 alcohol glycidyl ether</span> Chemical compound

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 120547-52-6.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Poly(propylene glycol) diglycidyl ether</span> Chemical compound

Poly(propylene glycol) diglycidyl ether (PPGDGE) is an organic chemical in the glycidyl ether family. There are a number of variations depending on the starting molecular weight of the polypropylene glycol. They have the formula (C3H6O)n.C6H10O3 and the IUPAC name is Poly[oxy(methyl-1,2-ethanediyl)],a-(2-oxiranylmethyl)-w-(2-oxiranylmethoxy)- A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer. It is REACH registered.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Diglycidyl resorcinol ether</span> Chemical compound

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

<span class="mw-page-title-main">Diglycidyl aniline</span> Chemical compound

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. It is used to reduce the viscosity of epoxy resin systems. It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. It is REACH registered in Europe with the EC number 218-259-5. A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent.

References

  1. PubChem. "1,4-Butanediol diglycidyl ether". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-04-02.
  2. Jagtap, Ameya Rajendra; More, Aarti (2022-08-01). "Developments in reactive diluents: a review". Polymer Bulletin. 79 (8): 5667–5708. doi:10.1007/s00289-021-03808-5. ISSN   1436-2449. S2CID   235678040.
  3. "Substance Information - ECHA". echa.europa.eu. Retrieved 2022-04-02.
  4. Crivello, James V. (2006). "Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerization". Journal of Polymer Science Part A: Polymer Chemistry. 44 (21): 6435–6448. Bibcode:2006JPoSA..44.6435C. doi:10.1002/pola.21761. ISSN   0887-624X.
  5. Monte, Salvatore J. (1998), Pritchard, Geoffrey (ed.), "Diluents and viscosity modifiers for epoxy resins", Plastics Additives: An A-Z reference, Polymer Science and Technology Series, Dordrecht: Springer Netherlands, vol. 1, pp. 211–216, doi:10.1007/978-94-011-5862-6_24, ISBN   978-94-011-5862-6 , retrieved 2022-03-29
  6. Howarth G.A "Synthesis of a legislation compliant corrosion protection coating system based on urethane, oxazolidine and waterborne epoxy technology" page 23 Master of Science Thesis April 1997 Imperial College London
  7. Ji, Gyu Yeul; Oh, Chang Hyun; Moon, Byung Gwan; Yi, Seong; Han, In Bo; Heo, Dong Hwa; Kim, Ki-Tack; Shin, Dong Ah; Kim, Keung Nyun (June 2015). "Efficacy and Safety of Sodium Hyaluronate with 1,4-Butanediol Diglycidyl Ether Compared to Sodium Carboxymethylcellulose in Preventing Adhesion Formation after Lumbar Discectomy". Korean Journal of Spine. 12 (2): 41–47. doi:10.14245/kjs.2015.12.2.41. ISSN   1738-2262. PMC   4513167 . PMID   26217381.
  8. Nicoletti, A.; Fiorini, M.; Paolillo, J.; Dolcini, L.; Sandri, M.; Pressato, D. (2013-01-01). "Effects of different crosslinking conditions on the chemical–physical properties of a novel bio-inspired composite scaffold stabilised with 1,4-butanediol diglycidyl ether (BDDGE)". Journal of Materials Science: Materials in Medicine. 24 (1): 17–35. doi:10.1007/s10856-012-4782-4. ISSN   1573-4838. PMID   23053811. S2CID   22093094.
  9. Fiorani, Andrea; Gualandi, Chiara; Panseri, Silvia; Montesi, Monica; Marcacci, Maurilio; Focarete, Maria Letizia; Bigi, Adriana (2014-10-01). "Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers". Journal of Materials Science: Materials in Medicine. 25 (10): 2313–2321. doi:10.1007/s10856-014-5196-2. ISSN   1573-4838. PMID   24664673. S2CID   5270837.
  10. Wu, Chi; Zuo, Ju; Chu, Benjamin (February 1989). "Molecular weight distribution of a branched epoxy polymer: 1,4-butanediol diglycidyl ether with cis-1,2-cyclohexanedicarboxylic anhydride". Macromolecules. 22 (2): 633–639. Bibcode:1989MaMol..22..633W. doi:10.1021/ma00192a021. ISSN   0024-9297.
  11. Xue, Yu; Chen, Hongyue; Xu, Chao; Yu, Dinghua; Xu, Huajin; Hu, Yi (2020). "Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether". RSC Advances. 10 (12): 7206–7213. Bibcode:2020RSCAd..10.7206X. doi: 10.1039/C9RA09271D . PMC   9049836 . PMID   35493875. S2CID   214083413.
  12. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins". Polymer Bulletin. 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN   1436-2449. S2CID   105389177.
  13. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings". Journal of Coatings Technology and Research. 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN   1935-3804. S2CID   256749849.
  14. "1,4-Butanediol diglycidyl ether - Hazardous Agents | Haz-Map". haz-map.com. Retrieved 2022-04-02.
  15. Jolanki, Riitta; Estlander, Tuula; Kanerva, Lasse (February 1987). "Contact allergy to an epoxy reactive diluent: 1,4-butanediol diglycidyl ether". Contact Dermatitis. 16 (2): 87–92. doi:10.1111/j.1600-0536.1987.tb01385.x. PMID   2952443. S2CID   36846087 via Wiley online.
  16. Berdasco, Nancy Anne M.; Waechter, John M. (2012-08-17), Bingham, Eula; Cohrssen, Barbara; Powell, Charles H. (eds.), "Epoxy Compounds: Aromatic Diglycidyl Ethers, Polyglycidyl Ethers, Glycidyl Esters, and Miscellaneous Epoxy Compounds", Patty's Toxicology, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 491–528, doi:10.1002/0471435139.tox083.pub2, ISBN   978-0-471-12547-1 , retrieved 2022-07-28

Further reading

External websites