Aether theories

Last updated

In the history of physics, aether theories (also known as ether theories) propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models.

Contents

This early modern aether has little in common with the aether of classical elements from which the name was borrowed. The assorted theories embody the various conceptions of this medium and substance.

Historical models

Luminiferous aether

Isaac Newton suggests the existence of an aether in the Third Book of Opticks (1st ed. 1704; 2nd ed. 1718): "Doth not this aethereal medium in passing out of water, glass, crystal, and other compact and dense bodies in empty spaces, grow denser and denser by degrees, and by that means refract the rays of light not in a point, but by bending them gradually in curve lines? ...Is not this medium much rarer within the dense bodies of the Sun, stars, planets and comets, than in the empty celestial space between them? And in passing from them to great distances, doth it not grow denser and denser perpetually, and thereby cause the gravity of those great bodies towards one another, and of their parts towards the bodies; every body endeavouring to go from the denser parts of the medium towards the rarer?" [1]

In the 19th century, luminiferous aether (or ether), meaning light-bearing aether, was a theorized medium for the propagation of light. James Clerk Maxwell developed a model to explain electric and magnetic phenomena using the aether, a model that led to what are now called Maxwell's equations and the understanding that light is an electromagnetic wave. [2] Later, a series of increasingly careful experiments were carried out in the late 1800s, including the Michelson–Morley experiment, to try to detect the motion of Earth through the aether, but no drag was detected. A range of proposed aether-dragging theories could explain the null result but these were more complex, and tended to use arbitrary-looking coefficients and physical assumptions. Joseph Larmor discussed the aether in terms of a moving magnetic field caused by the acceleration of electrons.

Hendrik Lorentz and George Francis FitzGerald offered, within the framework of Lorentz ether theory, an explanation of how the Michelson–Morley experiment could have failed to detect motion through the aether. However, the initial Lorentz theory predicted that motion through the aether would create a birefringence effect, which Rayleigh and Brace tested and failed to find (Experiments of Rayleigh and Brace). All of those results required the full application of the Lorentz transformation by Lorentz and Joseph Larmor in 1904. [3] [4] [5] [6] Summarizing the results of Michelson, Rayleigh and others, Hermann Weyl would later write that the aether had "betaken itself to the land of the shades in a final effort to elude the inquisitive search of the physicist". [7] In addition to possessing more conceptual clarity, Albert Einstein's 1905 special theory of relativity could explain all of the experimental results without referring to an aether at all. This eventually led most physicists to conclude that the earlier notion of a luminiferous aether was not a useful concept.

Mechanical gravitational aether

From the 16th until the late 19th century, gravitational effects had also been modeled using an aether. In a note at the end of his work "A Dynamical Theory of the Electromagnetic Field", Maxwell discussed a model for gravity based on a medium similar to the one he used for the electromagnetic field. He concluded that the medium would have "an enormous intrinsic energy" and would necessarily have to be diminished in areas of mass. He could not "understand in what way a medium can possess such properties" so he did not pursue it further. [8] The most well-known formulation is Le Sage's theory of gravitation, although variations on the idea were entertained by Isaac Newton, Bernhard Riemann, and Lord Kelvin. For example, Kelvin published a note on Le Sage's model in 1873, in which he found Le Sage's proposal thermodynamically flawed and suggested a possible way to salvage it using the then popular vortex theory of the atom. Kelvin later concluded,

This kinetic theory of matter is a dream, and can be nothing else, until it can explain chemical affinity, electricity, magnetism, gravitation, and the inertia of masses (that is, crowds) of vortices. Le Sage's theory might give an explanation of gravity and of its relation to inertia of masses, on the vortex theory, were it not for the essential aeolotropy of crystals, and the seemingly perfect isotropy of gravity. No finger post pointing towards a way that can possibly lead to a surmounting of this difficulty, or a turning of its flank, has been discovered, or imagined as discoverable. [9]

None of those concepts are considered to be viable by the scientific community today.

Non-standard interpretations in modern physics

General relativity

Albert Einstein sometimes used the word aether for the gravitational field within general relativity, but the only similarity of this relativistic aether concept with the classical aether models lies in the presence of physical properties in space, which can be identified through geodesics. As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and played no role in the continuing development of modern physics. [11] [12]

Quantum vacuum

Quantum mechanics can be used to describe spacetime as being non-empty at extremely small scales, fluctuating and generating particle pairs that appear and disappear incredibly quickly. It has been suggested by some such as Paul Dirac [13] that this quantum vacuum may be the equivalent in modern physics of a particulate aether. However, Dirac's aether hypothesis was motivated by his dissatisfaction with quantum electrodynamics, and it never gained support from the mainstream scientific community. [14]

Physicist Robert B. Laughlin wrote:

It is ironic that Einstein's most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed [..] The word 'ether' has extremely negative connotations in theoretical physics because of its past association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather nicely captures the way most physicists actually think about the vacuum. . . . Relativity actually says nothing about the existence or nonexistence of matter pervading the universe, only that any such matter must have relativistic symmetry. [..] It turns out that such matter exists. About the time relativity was becoming accepted, studies of radioactivity began showing that the empty vacuum of space had spectroscopic structure similar to that of ordinary quantum solids and fluids. Subsequent studies with large particle accelerators have now led us to understand that space is more like a piece of window glass than ideal Newtonian emptiness. It is filled with 'stuff' that is normally transparent but can be made visible by hitting it sufficiently hard to knock out a part. The modern concept of the vacuum of space, confirmed every day by experiment, is a relativistic ether. But we do not call it this because it is not accepted (taboo). [15]

Pilot waves

Louis de Broglie stated, "Any particle, ever isolated, has to be imagined as in continuous "energetic contact" with a hidden medium." [16] [17] However, as de Broglie pointed out, this medium "could not serve as a universal reference medium, as this would be contrary to relativity theory." [16]

See also

Related Research Articles

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Hendrik Lorentz</span> Dutch physicist (1853–1928)

Hendrik Antoon Lorentz was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect. He derived the Lorentz transformation of the special theory of relativity, as well as the Lorentz force, which describes the combined electric and magnetic forces acting on a charged particle in an electromagnetic field. Lorentz was also responsible for the Lorentz oscillator model, a classical model used to describe the anomalous dispersion observed in dielectric materials when the driving frequency of the electric field was near the resonant frequency, resulting in abnormal refractive indices.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.

In physics, action at a distance is the concept that an object's motion can be affected by another object without being in physical contact with it; that is, the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.

<span class="mw-page-title-main">Joseph Larmor</span> British physicist and mathematician

Sir Joseph Larmor was an Irish and British physicist and mathematician who made breakthroughs in the understanding of electricity, dynamics, thermodynamics, and the electron theory of matter. His most influential work was Aether and Matter, a theoretical physics book published in 1900.

The timeline of luminiferous aether or ether as a medium for propagating electromagnetic radiation begins in the 18th century. The aether was assumed to exist for much of the 19th century—until the Michelson–Morley experiment returned its famous null result. Further experiments were in general agreement with Michelson and Morley's result. By the 1920s, most scientists rejected the aether's existence.

Special relativity is a physical theory that plays a fundamental role in the description of all physical phenomena, as long as gravitation is not significant. Many experiments played an important role in its development and justification. The strength of the theory lies in its unique ability to correctly predict to high precision the outcome of an extremely diverse range of experiments. Repeats of many of those experiments are still being conducted with steadily increased precision, with modern experiments focusing on effects such as at the Planck scale and in the neutrino sector. Their results are consistent with the predictions of special relativity. Collections of various tests were given by Jakob Laub, Zhang, Mattingly, Clifford Will, and Roberts/Schleif.

In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of light waves propagating without a physical medium in which to do so. When experiments failed to detect the hypothesized luminiferous aether, physicists conceived explanations for the experiments' failure which preserved the hypothetical aether's existence.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

The deductive-nomological model of scientific explanation, also known as Hempel's model, the Hempel–Oppenheim model, the Popper–Hempel model, or the covering law model, is a formal view of scientifically answering questions asking, "Why...?". The DN model poses scientific explanation as a deductive structure, one where truth of its premises entails truth of its conclusion, hinged on accurate prediction or postdiction of the phenomenon to be explained.

According to ancient and medieval science, aether, also known as the fifth element or quintessence, is the material that fills the region of the universe beyond the terrestrial sphere. The concept of aether was used in several theories to explain several natural phenomena, such as the propagation of light and gravity. In the late 19th century, physicists postulated that aether permeated space, providing a medium through which light could travel in a vacuum, but evidence for the presence of such a medium was not found in the Michelson–Morley experiment, and this result has been interpreted to mean that no luminiferous aether exists.

<i>Annus mirabilis</i> papers Published papers of Albert Einstein in 1905

The annus mirabilis papers are the four papers that Albert Einstein published in Annalen der Physik, a scientific journal, in 1905. These four papers were major contributions to the foundation of modern physics. They revolutionized science's understanding of the fundamental concepts of space, time, mass, and energy. Because Einstein published these remarkable papers in a single year, 1905 is called his annus mirabilis.

  1. The first paper explained the photoelectric effect, which established the energy of the light quanta , and was the only specific discovery mentioned in the citation awarding Einstein the 1921 Nobel Prize in Physics.
  2. The second paper explained Brownian motion, which established the Einstein relation and led reluctant physicists to accept the existence of atoms.
  3. The third paper introduced Einstein's theory of special relativity, which used the universal constant speed of light to derive the Lorentz transformations.
  4. The fourth, a consequence of the theory of special relativity, developed the principle of mass–energy equivalence, expressed in the famous equation and which led to the discovery and use of atomic energy decades later.

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

<span class="mw-page-title-main">Relativistic electromagnetism</span> Physical phenomenon in electromagnetic field theory

Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations.

<span class="mw-page-title-main">Relativity priority dispute</span> Debate about priority credit for the theory of special relativity

Albert Einstein presented the theories of special relativity and general relativity in publications that either contained no formal references to previous literature, or referred only to a small number of his predecessors for fundamental results on which he based his theories, most notably to the work of Henri Poincaré and Hendrik Lorentz for special relativity, and to the work of David Hilbert, Carl F. Gauss, Bernhard Riemann, and Ernst Mach for general relativity. Subsequently, claims have been put forward about both theories, asserting that they were formulated, either wholly or in part, by others before Einstein. At issue is the extent to which Einstein and various other individuals should be credited for the formulation of these theories, based on priority considerations.

Electromagnetic mass was initially a concept of classical mechanics, denoting as to how much the electromagnetic field, or the self-energy, is contributing to the mass of charged particles. It was first derived by J. J. Thomson in 1881 and was for some time also considered as a dynamical explanation of inertial mass per se. Today, the relation of mass, momentum, velocity, and all forms of energy – including electromagnetic energy – is analyzed on the basis of Albert Einstein's special relativity and mass–energy equivalence. As to the cause of mass of elementary particles, the Higgs mechanism in the framework of the relativistic Standard Model is currently used. However, some problems concerning the electromagnetic mass and self-energy of charged particles are still studied.

Criticism of the theory of relativity of Albert Einstein was mainly expressed in the early years after its publication in the early twentieth century, on scientific, pseudoscientific, philosophical, or ideological bases. Though some of these criticisms had the support of reputable scientists, Einstein's theory of relativity is now accepted by the scientific community.

<span class="mw-page-title-main">History of field theory</span>

In the history of physics, the concept of fields had its origins in the 18th century in a mathematical formulation of Newton's law of universal gravitation, but it was seen as deficient as it implied action at a distance. In 1852, Michael Faraday treated the magnetic field as a physical object, reasoning about lines of force. James Clerk Maxwell used Faraday's conceptualisation to help formulate his unification of electricity and magnetism in his theory of electromagnetism.

<span class="mw-page-title-main">Timeline of special relativity and the speed of light</span>

This timeline describes the major developments, both experimental and theoretical, of:

References

  1. Isaac Newton, The Third Book of Opticks (2nd ed. 1718).
  2. James Clerk Maxwell: "A Treatise on Electricity and Magnetism/Part IV/Chapter XX"
  3. Strutt, John William (Lord Rayleigh) (December 1902). "LXXIII. Does motion through the Æther cause double refraction?". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4 (24): 678–683. doi:10.1080/14786440209462891. ISSN   1941-5982.
  4. Newburgh, R. G. (1973-01-01). "Motional Effects in Retardation Plates and Mode Locking in Ring Lasers". Applied Optics. 12 (1): 116–119. Bibcode:1973ApOpt..12..116N. doi:10.1364/AO.12.000116. ISSN   2155-3165. PMID   20125240.
  5. Schaffner, Kenneth F. (1974-03-01). "Einstein Versus Lorentz: Research Programmes and the Logic of Comparative Theory Evaluation". The British Journal for the Philosophy of Science. 25 (1): 45–78. doi:10.1093/bjps/25.1.45. ISSN   0007-0882.
  6. Wetzel, Reinhard A. (1913). "The New Relativity in Physics". Science. 38 (979): 466–474. Bibcode:1913Sci....38..466W. doi:10.1126/science.38.979.466. ISSN   0036-8075. JSTOR   1640709. PMID   17808012.
  7. Weyl, Hermann (1922). Space, Time, Matter. Dutton.
  8. Maxwell, James Clerk (1864). "A Dynamical Theory of the Electromagnetic Field".
  9. Kelvin, Popular Lectures, vol. i. p. 145.
  10. "Einstein: Ether and Relativity". Maths History. Retrieved 2023-12-19.
  11. Kostro, L. (1992), "An outline of the history of Einstein's relativistic ether concept", in Jean Eisenstaedt; Anne J. Kox (eds.), Studies in the history of general relativity, vol. 3, Boston-Basel-Berlin: Birkhäuser, pp. 260–280, ISBN   978-0-8176-3479-7
  12. Stachel, J. (2001), "Why Einstein reinvented the ether", Physics World, 14 (6): 55–56, doi:10.1088/2058-7058/14/6/33
  13. Dirac, Paul: "Is there an Aether?", Nature 168 (1951), p. 906.
  14. Kragh, Helge (2005). Dirac. A Scientific Biography. Cambridge: Cambridge University Press. pp. 200–203. ISBN   978-0-521-01756-5.
  15. Laughlin, Robert B. (2005). A Different Universe: Reinventing Physics from the Bottom Down . NY, NY: Basic Books. pp.  120–121. ISBN   978-0-465-03828-2.
  16. 1 2 Annales de la Fondation Louis de Broglie, Volume 12, no.4, 1987
  17. Petroni, Nicola Cufaro; Vigier, Jean Pierre (1983). "Dirac's aether in relativistic quantum mechanics". Foundations of Physics. 13 (2): 253. Bibcode:1983FoPh...13..253P. doi:10.1007/BF01889484. S2CID   14888007. It is shown that one can deduce the de Broglie waves as real collective Markov processes on the top of Dirac's aether

Further reading