Antiparallelogram

Last updated

An antiparallelogram Antiparallelogram.svg
An anti­parallelogram

In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented. Antiparallelograms are also called contraparallelograms [1] or crossed parallelograms. [2]

Contents

Antiparallelograms occur as the vertex figures of certain nonconvex uniform polyhedra. In the theory of four-bar linkages, the linkages with the form of an antiparallelogram are also called butterfly linkages or bow-tie linkages, and are used in the design of non-circular gears. In celestial mechanics, they occur in certain families of solutions to the 4-body problem.

Every antiparallelogram has an axis of symmetry, with all four vertices on a circle. It can be formed from an isosceles trapezoid by adding the two diagonals and removing two parallel sides. The signed area of every antiparallelogram is zero.

Geometric properties

Three circles associated with an antiparallelogram Antipar 3circles.svg
Three circles associated with an antiparallelogram

An antiparallelogram is a special case of a crossed quadrilateral, with two pairs of equal-length edges. [3] In general, crossed quadrilaterals can have unequal edges. [3] A special form of the antiparallelogram is a crossed rectangle, in which two opposite edges are parallel. [4] Every antiparallelogram is a cyclic quadrilateral, meaning that its four vertices all lie on a single circle. [3] Additionally, the four extended sides of any antiparallelogram are the bitangents of two circles, making antiparallelograms closely related to the tangential quadrilaterals, ex-tangential quadrilaterals, and kites (which are both tangential and ex-tangential). [5]

Every antiparallelogram has an axis of symmetry through its crossing point. Because of this symmetry, it has two pairs of equal angles and two pairs of equal sides. [2] The four midpoints of its sides lie on a line perpendicular to the axis of symmetry; that is, for this kind of quadrilateral, the Varignon parallelogram is a degenerate quadrilateral of area zero, consisting of four collinear points. [6] [7] The convex hull of an antiparallelogram is an isosceles trapezoid, and every antiparallelogram may be formed from an isosceles trapezoid (or its special cases, the rectangles and squares) by replacing two parallel sides by the two diagonals of the trapezoid. [4]

Because an antiparallelogram forms two congruent triangular regions of the plane, but loops around those two regions in opposite directions, its signed area is the difference between the regions' areas and is therefore zero. [7] The polygon's unsigned area (the total area it surrounds) is the sum, rather than the difference, of these areas. For an antiparallelogram with two parallel diagonals of lengths and , separated by height , this sum is . [4] It follows from applying the triangle inequality to these two triangular regions that the crossing pair of edges in an antiparallelogram must always be longer than the two uncrossed edges. [8]

Applications

In polyhedra

Small rhombihexahedron.png
A small rhombihexahedron. Slicing off a vertex gives an anti­parallelogram cross-section as the vertex figure.
DU18 small rhombihexacron.png
A small rhombihexacron, a polyhedron with anti­parallelograms (formed by pairs of coplanar triangles) as its faces.
Br2-anim.gif
A Bricard octahedron constructed as a bipyramid over an anti­parallelogram.

Several nonconvex uniform polyhedra, including the tetrahemihexahedron, cubohemioctahedron, octahemioctahedron, small rhombihexahedron, small icosihemidodecahedron, and small dodecahemidodecahedron, have antiparallelograms as their vertex figures, the cross-sections formed by slicing the polyhedron by a plane that passes near a vertex, perpendicularly to the axis between the vertex and the center. [9]

One form of a non-uniform but flexible polyhedron, the Bricard octahedron, can be constructed as a bipyramid over an antiparallelogram. [10]

Four-bar linkages

Antiparallelogram linkage braced at its midpoints to stop it from uncrossing. Only three midpoint connections are required.
Dotted links indicate the last link required for the fourth connection. Antiparallelogram Bracing.gif
Antiparallelogram linkage braced at its midpoints to stop it from uncrossing. Only three midpoint connections are required.
Dotted links indicate the last link required for the fourth connection.

The antiparallelogram has been used as a form of four-bar linkage, in which four rigid beams of fixed length (the four sides of the antiparallelogram) may rotate with respect to each other at joints placed at the four vertices of the antiparallelogram. In this context it is also called a butterfly or bow-tie linkage. As a linkage, it has a point of instability in which it can be converted into a parallelogram and vice versa, but either of these linkages can be braced to prevent this instability. [12] [11]

For both the parallelogram and antiparallelogram linkages, if one of the long (crossed) edges of the linkage is fixed as a base, the free joints move on equal circles, but in a parallelogram they move in the same direction with equal velocities while in the antiparallelogram they move in opposite directions with unequal velocities. [13] As James Watt discovered, if an antiparallelogram has its long side fixed in this way, the midpoint of the unfixed long edge will trace out a lemniscate or figure eight curve. For the antiparallelogram formed by the sides and diagonals of a square, it is the lemniscate of Bernoulli. [14] [15]

The antiparallelogram with its long side fixed is a variant of Watt's linkage. [14] An antiparallelogram is an important feature in the design of Hart's inversor, a linkage that (like the Peaucellier–Lipkin linkage) can convert rotary motion to straight-line motion. [16] An antiparallelogram-shaped linkage can also be used to connect the two axles of a four-wheeled vehicle, decreasing the turning radius of the vehicle relative to a suspension that only allows one axle to turn. [2] A pair of nested antiparallelograms was used in a linkage defined by Alfred Kempe as part of Kempe's universality theorem, stating that any algebraic curve may be traced out by the joints of a suitably defined linkage. Kempe called the nested-antiparallelogram linkage a "multiplicator", as it could be used to multiply an angle by an integer. [1] Used in the other direction, to divide angles, it can be used for angle trisection (although not as a straightedge and compass construction). [17] Kempe's original constructions using this linkage overlooked the parallelogram-antiparallelogram instability, but bracing the linkages fixes his proof of the universality theorem. [12]

Gear design

Antiparallelogram and Rolling Ellipses.gif
Fixing the short edge of an antiparallelogram linkage causes the crossing point to trace out an ellipse. These ellipses are the centrodes of the linkage.
Antiparallelogram and Elliptical Gears.gif
Elliptical gears based on the motion of an antiparallelogram linkage

Suppose that one of the uncrossed edges of an antiparallelogram linkage is fixed in place, and the remaining linkage moves freely. As the linkage moves, each antiparallelogram formed can be divided into two congruent triangles meeting at the crossing point. In the triangle based on the fixed edge, the lengths of the two moving sides sum to the constant length of one of the antiparallelogram's crossed edges, and therefore the moving crossing point traces out an ellipse with the fixed points as its foci. Symmetrically, the second (moving) uncrossed edge of the antiparallelogram has as its endpoints the foci of a second ellipse, formed from the first one by reflection across a tangent line through the crossing point. [2] [18] Because the second ellipse rolls around the first, this construction of ellipses from the motion of an antiparallelogram can be used in the design of elliptical gears that convert uniform rotation into non-uniform rotation or vice versa. [19]

Celestial mechanics

In the n-body problem, the study of the motions of point masses under Newton's law of universal gravitation, an important role is played by central configurations, solutions to the n-body problem in which all of the bodies rotate around some central point as if they were rigidly connected to each other. For instance, for three bodies, there are five solutions of this type, given by the five Lagrangian points. For four bodies, with two pairs of the bodies having equal masses (but with the ratio between the masses of the two pairs varying continuously), numerical evidence indicates that there exists a continuous family of central configurations, related to each other by the motion of an antiparallelogram linkage. [20]

Related Research Articles

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In elementary geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

<span class="mw-page-title-main">Rhombus</span> Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

<span class="mw-page-title-main">Trapezoid</span> Convex quadrilateral with at least one pair of parallel sides

In geometry, a trapezoid in USA and Canadian English, or trapezium in British and other forms of English, is a quadrilateral that has at least one pair of parallel sides.

<span class="mw-page-title-main">Midpoint</span> Point on a line segment which is equidistant from both endpoints

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

<span class="mw-page-title-main">Isosceles trapezoid</span> Trapezoid symmetrical about an axis

In Euclidean geometry, an isosceles trapezoid is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, or as a trapezoid whose diagonals have equal length. Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry. In any isosceles trapezoid, two opposite sides are parallel, and the two other sides are of equal length, and the diagonals have equal length. The base angles of an isosceles trapezoid are equal in measure.

<span class="mw-page-title-main">Square</span> Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ABCD would be denoted ABCD.

<span class="mw-page-title-main">Tangential quadrilateral</span> Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

<span class="mw-page-title-main">Varignon's theorem</span> The midpoints of the sides of an arbitrary quadrilateral form a parallelogram

In Euclidean geometry, Varignon's theorem holds that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram, called the Varignon parallelogram. It is named after Pierre Varignon, whose proof was published posthumously in 1731.

<span class="mw-page-title-main">Bricard octahedron</span> Self-crossing 8-sided flexible polyhedron

In geometry, a Bricard octahedron is a member of a family of flexible polyhedra constructed by Raoul Bricard in 1897. The overall shape of one of these polyhedron may change in a continuous motion, without any changes to the lengths of its edges nor to the shapes of its faces. These octahedra were the first flexible polyhedra to be discovered.

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span>

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

<span class="mw-page-title-main">Tangential trapezoid</span> Trapezoid whose sides are all tangent to the same circle

In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel. As for other trapezoids, the parallel sides are called the bases and the other two sides the legs. The legs can be equal, but they don't have to be.

<span class="mw-page-title-main">Equidiagonal quadrilateral</span>

In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics, where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.

<span class="mw-page-title-main">Right kite</span> Symmetrical quadrilateral

In Euclidean geometry, a right kite is a kite that can be inscribed in a circle. That is, it is a kite with a circumcircle. Thus the right kite is a convex quadrilateral and has two opposite right angles. If there are exactly two right angles, each must be between sides of different lengths. All right kites are bicentric quadrilaterals, since all kites have an incircle. One of the diagonals divides the right kite into two right triangles and is also a diameter of the circumcircle.

<span class="mw-page-title-main">Crossed polygon</span>

A crossed polygon is a polygon in the plane with a turning number or density of zero, with the appearance of a figure 8, infinity symbol, or lemniscate curve.

References

  1. 1 2 Demaine, Erik; O'Rourke, Joseph (2007), Geometric Folding Algorithms, Cambridge University Press, pp. 32–33, doi:10.1017/CBO9780511735172, ISBN   978-0-521-85757-4, MR   2354878
  2. 1 2 3 4 Bryant, John; Sangwin, Christopher J. (2008), "3.3 The Crossed Parallelogram", How Round Is Your Circle? Where Engineering and Mathematics Meet, Princeton University Press, pp. 54–56, ISBN   978-0-691-13118-4 .
  3. 1 2 3 Begalla, Engjëll; Perucca, Antonella (2020), "The ABCD of cyclic quadrilaterals", Uitwiskeling, University of Luxembourg, hdl:10993/43232
  4. 1 2 3 Alsina, Claudi; Nelsen, Roger B. (2020), A Cornucopia of Quadrilaterals, The Dolciani Mathematical Expositions, vol. 55, Providence, Rhode Island: MAA Press and American Mathematical Society, p. 212, ISBN   978-1-4704-5312-1, MR   4286138
  5. Wheeler, Roger F. (1958), "Quadrilaterals", The Mathematical Gazette , 42 (342): 275–276, doi:10.2307/3610439, JSTOR   3610439, S2CID   250434576
  6. Muirhead, R. F. (February 1901), "Geometry of the isosceles trapezium and the contra-parallelogram, with applications to the geometry of the ellipse", Proceedings of the Edinburgh Mathematical Society, 20: 70–72, doi: 10.1017/s0013091500032892
  7. 1 2 De Villiers, Michael (2015), "Slaying a geometrical 'monster': finding the area of a crossed quadrilateral", Learning and Teaching Mathematics, 2015 (18): 23–28, hdl:10520/EJC175721
  8. The same argument proves more generally that in any convex quadrilateral (such as the isosceles trapezoid from which an antiparallelogram is derived) the sum of the two diagonals is longer than the sum of any two opposite sides. In the isosceles trapezoid, the two diagonals are equal, as are the two opposite sides, simplifying this inequality. For the use of the triangle inequality to prove the inequality on sums of diagonals see e.g. Demaine & O'Rourke (2007, p. 80)
  9. Coxeter, H. S. M.; Longuet-Higgins, M. S.; Miller, J. C. P. (1954), "Uniform polyhedra", Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246 (916): 401–450, Bibcode:1954RSPTA.246..401C, doi:10.1098/rsta.1954.0003, JSTOR   91532, MR   0062446, S2CID   202575183
  10. Demaine & O'Rourke (2007), Section 23.2, "Flexible polyhedra", pp. 345–348
  11. 1 2 Abbott, Timothy Good (2008), "3.1.2 Contraparallelograms", Generalizations of Kempe's Universality Theorem (PDF) (Master's thesis), Massachusetts Institute of Technology, pp. 34–36
  12. 1 2 Sossinsky, Alexey (2016), "Configuration spaces of planar linkages", Handbook of Teichmüller theory, Vol. VI, IRMA Lectures in Mathematics and Theoretical Physics, vol. 27, Zürich: European Mathematical Society, pp. 335–373, MR   3618193 ; see p. 359
  13. Norton, Robert L. (2003), Design of Machinery, McGraw-Hill Professional, p. 51, ISBN   978-0-07-121496-4
  14. 1 2 Bryant & Sangwin (2008), pp. 58–59
  15. Cundy, H. Martyn (March 2005), "89.23 The lemniscate of Bernoulli", The Mathematical Gazette , 89 (514): 89–93, doi:10.1017/s0025557200176855, S2CID   125521872
  16. Dijksman, E. A. (1976), Motion Geometry of Mechanisms, Cambridge University Press, p. 203, ISBN   9780521208413
  17. Yates, Robert C. (March 1941), "The trisection problem", National Mathematics Magazine, 15 (6): 278–293, doi:10.2307/3028413, JSTOR   3028413
  18. van Schooten, Frans (1646), De Organica Conicarum Sectionum In Plano Descriptione, Tractatus. Geometris, Opticis; Præsertim verò Gnomonicis et Mechanicis Utilis. Cui subnexa est Appendix, de Cubicarum Æquationum resolutione, pp. 49–50, 69–70
  19. Glaeser, Georg (2020), "Antiparallelograms; It does not always have to be a uniform rotation ...", Geometry and its Applications in Arts, Nature and Technology, Springer International Publishing, pp. 428–429, doi:10.1007/978-3-030-61398-3, ISBN   978-3-030-61397-6, S2CID   241160811
  20. Grebenikov, Evgenii A.; Ikhsanov, Ersain V.; Prokopenya, Alexander N. (2006), "Numeric-symbolic computations in the study of central configurations in the planar Newtonian four-body problem", Computer algebra in scientific computing, Lecture Notes in Comput. Sci., vol. 4194, Berlin: Springer, pp. 192–204, doi:10.1007/11870814_16, MR   2279793