Apollo abort modes

Last updated

Apollo abort modes were procedures by which the nominal launch of an Apollo spacecraft, either the Saturn IB or Saturn V rocket, could be terminated. The abort of the flight allowed for the rescue of the crew if the rocket failed catastrophically. Depending on how far the flight had progressed, different procedure or modes would be used. In the history of the Apollo Program, none of the abort modes were ever used on any of the fifteen crewed Apollo spacecraft flights.

Contents

Houston's announcements of the current abort mode and the spacecraft commander's acknowledgements were among the few things said on the radio link during the first minutes of flight.

If the rocket failed during the first phases of the flight, the Emergency Detection System (EDS) would automatically give the command to abort. The reason is that life-threatening situations can develop too fast for humans to discuss and react to. In the later, less violent phases of the ascent, the EDS was turned off and an abort would have to be initiated manually.

Overview

Of the five abort modes, the modes up to three (III) are variations of jettisoning the entire rocket followed by an immediate landing in the sea (splashdown). Mode four (IV) and the Saturn V-specific modes are variations of jettisoning only the failing rocket stage, using the other stages to continue into Earth orbit. Once there, a backup Earth-orbit mission could be performed so that the flight was not entirely in vain. In all cases, the Command Module (CM) with the astronauts performs a splashdown by:

Pad abort

Apollo Launch Escape System diagram Launch escape system diagram.jpg
Apollo Launch Escape System diagram

If the rocket failed in the last five minutes before launch, the CM and the launch escape system (LES, see figure) would separate from the remainder of the rocket below with the LES propelling itself and the CM beneath it upward and eastward to the sea using a small solid-fueled motor (the launch escape motor) at the top of the tower on the launch escape system. The launch escape tower would then be jettisoned in anticipation of the parachute deployment and the CM would splash down. (Preparation for a pad abort is seen in Apollo video footage: five minutes before launch, the umbilical arm connecting to the CM retracts and swings clear of the rocket. It does so because the swing arm must be out of the way in case the EDS decides to abort.)

Two tests of the LES were conducted:

Mode I

An abort using the LES, this abort mode could be conducted from launch until the LES was jettisoned 30 seconds after the ignition of the second stage.

Mode IA (one alpha)

During the first 42 seconds of flight for the Saturn V or 60 seconds of the flight for the Saturn IB, the rocket is still relatively upright and an abort is much like a pad abort, lasting up to 3,000 metres (9,800 ft). During the abort, the main pitch control motors move the CM out of the flight path of the possibly exploding rocket. At 14 seconds into the abort, the LES is jettisoned in the lead up to the splashdown.

Mode IB (one bravo)

From 3,000 metres (9,800 ft) to 30.5 km (100,000 ft), the rocket is tilted eastwards far enough that firing the pitch control motor is unnecessary. After the LES main motor moves the CM away from the rocket, the tower would deploy canards (small wings at the tip). They would force the CM-LES combination to pitch over with the CM bottom forward (blunt-end forward or BEF attitude.) This was necessary because the parachutes stowed at the CM top were only designed to be deployed in a downwind direction. [note 1]

Mode IC (one charlie)

From 30.5 km (100,000 ft) until the LES is jettisoned, pitching the CM-LES combination over into the CM-forward position would still be necessary, but in the now thin air the canards are useless. Instead, the small engines of the CM's reaction control system (RCS) would do the job. During One-Charlie, the first staging occurs, that is the jettisoning of the spent first stage and ignition of the second stage. One-Charlie ceases about 30 seconds after the staging when the LES is jettisoned, at an altitude of about 90 km (295,000 ft or 55 miles).

Mode II

With the LES jettisoned, the Command/Service Module (CSM) would separate as a whole from the rocket and use its large engine and RCS engines to move clear of the rocket and align itself. The CM would then separate from the Service Module (SM) and splash down.

Mode III

A Mode III type abort would be used when a Mode II type would risk the spacecraft coming down over land, or landing in the cold water of the North Atlantic. The CSM would separate from the rocket in the same manner as a Mode II abort, but would additionally use the SPS engine to make either a posigrade burn (Mode IIIA) or retrograde burn (Mode IIIB) to land in a specific area on the eastern side of the Atlantic. Mode III was only available as a primary abort mode for 10–15 seconds during a Saturn IB launch, and was only used as a backup abort mode for Saturn V launches, in case of an abort requiring the immediate landing of the spacecraft.

Mode IV

Mode IV was an abort mode that occurred during the S-IVB burn. Should the S-IVB fail, the Service Module engine can place the CSM into Earth orbit to perform an Earth-orbit mission.

Mode V

A Mode V abort was only planned for use during the Apollo-Soyuz Test Project launch. In the event of an early S-IVB shutdown, the CSM RCS thrusters would be used to insert the entire stack (including the docking adapter) into orbit. The time window for a Mode V abort was only 1.5 seconds before nominal S-IVB cutoff.

Saturn V specific abort modes

During orbital abort phases (S-IVB to COI, S-IVB to orbit and Mode IV), modes II and III were available as backup modes in the event of further problems.

The EDS was enabled for the pad abort (beginning 5 minutes prior to launch) through abort mode IB phases. Beginning in mode IC, the EDS was switched off and aborts would have had to be commanded manually.

S-IVB to COI

("Saturn IV-B (NASA's designation for the Saturn V's third stage burn) To Contingency Orbit Insertion") In case of a failure of the S-II second stage, the stage would be jettisoned, and the rocket is high and fast enough that the S-IVB third stage, followed by the Service Module (SM) engine, has enough propellant to place the spacecraft in Earth orbit. There would not be enough propellant to perform trans-lunar injection, so only an Earth-orbit mission would be performed.

S-IVB to Orbit

The failing S-II would again be jettisoned, but Earth orbit insertion is now possible by the S-IVB alone. Other than not using the SM engine, this is identical to an S-IVB to COI abort.

See also

Notes

  1. As it turned out, however, the parachutes would still successfully deploy even with the CM traveling nose-forward; this was discovered during the A-003 abort test, when the canards deployed, but failed to flip the spacecraft blunt-end-forward due to an extremely high roll rate resulting from a booster malfunction.

Related Research Articles

<span class="mw-page-title-main">Apollo program</span> 1961–1972 American crewed lunar exploration program

The Apollo program, also known as Project Apollo, was the United States human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), which succeeded in preparing and landing the first humans on the Moon from 1968 to 1972. It was first conceived in 1960 during President Dwight D. Eisenhower's administration as a three-person spacecraft to follow the one-person Project Mercury, which put the first Americans in space. Apollo was later dedicated to President John F. Kennedy's national goal for the 1960s of "landing a man on the Moon and returning him safely to the Earth" in an address to Congress on May 25, 1961. It was the third US human spaceflight program to fly, preceded by the two-person Project Gemini conceived in 1961 to extend spaceflight capability in support of Apollo.

<span class="mw-page-title-main">Apollo 7</span> First crewed flight of the Apollo space program

Apollo 7 was the first crewed flight in NASA's Apollo program, and saw the resumption of human spaceflight by the agency after the fire that had killed the three Apollo 1 astronauts during a launch rehearsal test on January 27, 1967. The Apollo 7 crew was commanded by Walter M. Schirra, with command module pilot Donn F. Eisele and lunar module pilot R. Walter Cunningham.

<span class="mw-page-title-main">Apollo 9</span> 3rd crewed mission of the Apollo space program

Apollo 9 was the third human spaceflight in NASA's Apollo program. Flown in low Earth orbit, it was the second crewed Apollo mission that the United States launched via a Saturn V rocket, and was the first flight of the full Apollo spacecraft: the command and service module (CSM) with the Lunar Module (LM). The mission was flown to qualify the LM for lunar orbit operations in preparation for the first Moon landing by demonstrating its descent and ascent propulsion systems, showing that its crew could fly it independently, then rendezvous and dock with the CSM again, as would be required for the first crewed lunar landing. Other objectives of the flight included firing the LM descent engine to propel the spacecraft stack as a backup mode, and use of the portable life support system backpack outside the LM cabin.

<span class="mw-page-title-main">Apollo 10</span> Second crewed mission to orbit the Moon

Apollo 10 was the fourth human spaceflight in the United States' Apollo program and the second to orbit the Moon. NASA, the mission's operator, described it as a "dress rehearsal" for the first Moon landing. It was designated an "F" mission, intended to test all spacecraft components and procedures short of actual descent and landing.

<span class="mw-page-title-main">Apollo 12</span> Second crewed Moon landing

Apollo 12 was the sixth crewed flight in the United States Apollo program and the second to land on the Moon. It was launched on November 14, 1969, by NASA from the Kennedy Space Center, Florida. Commander Charles "Pete" Conrad and Lunar Module Pilot Alan L. Bean performed just over one day and seven hours of lunar surface activity while Command Module Pilot Richard F. Gordon remained in lunar orbit.

<span class="mw-page-title-main">Apollo 4</span> First test flight of the Apollo Saturn V rocket

Apollo 4, also known as SA-501, was the uncrewed first test flight of the Saturn V launch vehicle, the rocket that eventually took astronauts to the Moon. The space vehicle was assembled in the Vehicle Assembly Building, and was the first to be launched from Kennedy Space Center (KSC) in Florida, ascending from Launch Complex 39, where facilities built specially for the Saturn V had been constructed.

<span class="mw-page-title-main">Apollo 5</span> First uncrewed test flight of the Apollo Lunar Module

Apollo 5, also known as AS-204, was the uncrewed first flight of the Apollo Lunar Module (LM) that would later carry astronauts to the surface of the Moon. The Saturn IB rocket bearing the LM lifted off from Cape Kennedy on January 22, 1968. The mission was successful, though due to programming problems an alternate mission to that originally planned was executed.

<span class="mw-page-title-main">Apollo 6</span> Second test flight of the Apollo Saturn V rocket

Apollo 6, also known as AS-502, was the third and final uncrewed flight in the United States' Apollo Program and the second test of the Saturn V launch vehicle. It qualified the Saturn V for use on crewed missions, and it was used beginning with Apollo 8 in December 1968.

<span class="mw-page-title-main">AS-201</span> 1966 uncrewed, suborbital test flight within the Apollo program

AS-201, flown February 26, 1966, was the first uncrewed test flight of an entire production Block I Apollo command and service module and the Saturn IB launch vehicle. The spacecraft consisted of the second Block I command module and the first Block I service module. The suborbital flight was a partially successful demonstration of the service propulsion system and the reaction control systems of both modules, and successfully demonstrated the capability of the command module's heat shield to survive re-entry from low Earth orbit.

<span class="mw-page-title-main">AS-203</span> Uncrewed flight of the Saturn IB rocket, July 5, 1966

AS-203 was an uncrewed flight of the Saturn IB rocket on July 5, 1966. It carried no command and service module, as its purpose was to verify the design of the S-IVB rocket stage restart capability that would later be used in the Apollo program to boost astronauts from Earth orbit to a trajectory towards the Moon. It achieved its objectives, but the stage was inadvertently destroyed after four orbits.

<span class="mw-page-title-main">AS-202</span> Uncrewed test flight of the Apollo Program

AS-202 was the second uncrewed, suborbital test flight of a production Block I Apollo command and service module launched with the Saturn IB launch vehicle. It was launched on August 25, 1966, and was the first flight which included the spacecraft guidance, navigation control system and fuel cells. The success of this flight enabled the Apollo program to judge the Block I spacecraft and Saturn IB ready to carry men into orbit on the next mission, AS-204.

<span class="mw-page-title-main">AS-101</span> 1964 Apollo Program test flight

AS-101 was the sixth flight of the Saturn I launch vehicle, which carried the first boilerplate Apollo spacecraft into low Earth orbit. The test took place on May 28, 1964, lasting for four orbits. The spacecraft and its upper stage completed a total of 54 orbits before reentering the atmosphere and crashing in the Pacific Ocean on June 1, 1964.

<span class="mw-page-title-main">Constellation program</span> Cancelled 2005–2010 NASA human spaceflight program

The Constellation program was a crewed spaceflight program developed by NASA, the space agency of the United States, from 2005 to 2009. The major goals of the program were "completion of the International Space Station" and a "return to the Moon no later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The program's logo reflected the three stages of the program: the Earth (ISS), the Moon, and finally Mars—while the Mars goal also found expression in the name given to the program's booster rockets: Ares. The technological aims of the program included the regaining of significant astronaut experience beyond low Earth orbit and the development of technologies necessary to enable sustained human presence on other planetary bodies.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

<span class="mw-page-title-main">Apollo command and service module</span> Component of the Apollo spacecraft

The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.

<span class="mw-page-title-main">Journey of Apollo 15 to the Moon</span> Overview from launch to lunar orbit insertion of Apollo 15.

Launched at 9:34:00 am EST on July 26, 1971, Apollo 15 took four days to reach the Moon. After spending two hours in orbit around the Earth, the S-IVB third stage of the Saturn V was reignited to send them to the Moon.

<span class="mw-page-title-main">Orion abort modes</span> Launch abort modes used by the Orion spacecraft

The Orion Multi-Purpose Crew Vehicle is equipped with a launch escape system. Orion has several abort modes. Some of these may not use the LAS itself, but would use the second stage of the SLS, or even the Orion vehicle's own propulsion system instead.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered with liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

References