Aquarium lighting

Last updated

Aquarium lighting describes any type of artificial lighting that is used to illuminate an aquarium. Some types of aquaria such as reef aquariums and planted aquariums require specialized high intensity lighting to support photosynthetic life within the tank.

Contents

Freshwater

Aquarium with LED lighting Led Aquarium Light.jpg
Aquarium with LED lighting

Freshwater aquarium lighting is commonly provided by screw-in incandescent bulbs, fluorescent tubes and LED lamps. Incandescent lighting is becoming less popular because it uses much more energy and produces more heat than the other lighting types. [1] Compact fluorescent lighting with a compatible screw-in base is frequently used as a direct replacement for incandescent bulbs. [2]

Freshwater planted aquariums require more specialized light sources. High-intensity compact fluorescent bulbs, high output fluorescent bulbs or metal halide lamps are often used over such aquariums to encourage plant growth. In addition to providing a much stronger light source, these light sources also offer a better spectrum for plant and algae growth than standard lighting. However, this metal halide lighting often uses more electricity and can produce excessive heat.

Other newer sources for planted aquariums that use less electricity and produce less heat include the T2, T5, SHO, and LED. The LED aquarium light fixtures generally are the most efficient, although the T2, T5, and in particular the SHO, have their positive planted aquarium applications as well. [3]

Brackish

Brackish aquarium lighting is similar to freshwater and planted tank lighting, depending on the species included. Brackish aquariums may also include infrared or UVB bulbs (or both types) for basking animals such as turtles. [4]

Marine

Fish only

In fish-only marine aquariums, lighting is intended only for illumination. Lighting is chosen primarily with aesthetic considerations for optimal viewing of the fish. The lighting is generally of much lower intensity than is used in reef aquariums to limit algae growth.

Reef

The lighting used for reef aquariums is the highest intensity of all aquarium types. Typical light sources types include LED, fluorescent, metal halide, and sometimes plasma lamps. Simple lighting setups use a single lamp or multiple lamps of a single type. More advanced setups can include several lamp types and can also include lamps of different colours. Lamp colour plays an important role in reef aquarium lighting for both aesthetic preference and to optimally sustain the photosynthetic life within the aquarium. Many corals require a deep blue or actinic spectrum of light to thrive.

T5 High Output fluorescent bulbs which are thinner than traditional T8 bulbs and provide a much brighter, more powerful light are commonly used as are the older VHO (Very High Output) fluorescent tubes and compact fluorescent lighting.

Another light source in reef aquariums is metal halide lighting. These high output lights closely recreate the shimmering effect of bright tropical sun over a patch of coral reef. Metal halide bulbs come in a variety of spectra from 5000k on up to 20,000k and allow for a variety of light-hungry corals to survive under them. Many aquarists will use metal halide bulbs in conjunction with either power compact fluorescents or T5 fluorescents since halide lighting does not have the overall balanced effect of other light types. While very useful to reef aquarium keepers, halide lighting also uses a lot of electricity (150-400 watts being common) and produces copious amounts of heat. Most reef keepers mount halide bulbs at least one foot above their tank and some, due to the lights' heat output have had to add chillers to keep aquarium water cool.

Many light fixtures come as all-in-one units with light for both daylight hours and nighttime viewing. LED lamps of 3/4 to 2 watts can be implemented to come on at night, simulating the glow of the moon over the tank. All in one fixtures require large fans to cool the bulbs and achieve maximum light efficiency. LED lighting is also becoming more common for not only lunar lighting but also to simulate daylight conditions, LEDs have a higher initial cost than other lighting sources but utilize much less energy. They are also dimmable. LEDs produce a very narrow color spectrum that is limited to a narrow band of wavelengths. For this reason an array of different colored LEDs is required to be used in combination to simulate spectral coverage that is suitable for coral growth. Early adopters of pure LED based systems have reported that the limited color spectrum provided by LEDs may not produce optimal coral growth.

Notes

  1. "Lighting Your Aquarium". petplace.com. Intelligent Content. Retrieved 2012-04-19.
  2. "Lighting Your Tank". Ecotanks Fish Blog. Archived from the original on 2012-10-27. Retrieved 2012-04-19.
  3. "Aquarium Lighting; Facts & Information".
  4. "Terrapin Care" . Retrieved 2012-04-30.

Related Research Articles

Electric light A device that produces light from electricity

An electric light is a device that produces visible light from electric current. It is the most common form of artificial lighting and is essential to modern society, providing interior lighting for buildings and exterior light for evening and nighttime activities. In technical usage, a replaceable component that produces light from electricity is called a lamp. Lamps are commonly called light bulbs; for example, the incandescent light bulb. Lamps usually have a base made of ceramic, metal, glass, or plastic, which secures the lamp in the socket of a light fixture. The electrical connection to the socket may be made with a screw-thread base, two metal pins, two metal caps or a bayonet cap.

Incandescent light bulb Electric light with a wire filament heated until it glows

An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a wire filament heated until it glows. The filament is enclosed in a glass bulb to protect the filament from oxidation. Current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

Halogen lamp Incandescent lamp variety

A halogen lamp, also known as a tungsten halogen, quartz-halogen or quartz iodine lamp, is an incandescent lamp consisting of a tungsten filament sealed into a compact transparent envelope that is filled with a mixture of an inert gas and a small amount of a halogen such as iodine or bromine. The combination of the halogen gas and the tungsten filament produces a halogen cycle chemical reaction which redeposits evaporated tungsten to the filament, increasing its life and maintaining the clarity of the envelope. This allows the filament to operate at a higher temperature than a standard incandescent lamp of similar power and operating life; this also produces light with higher luminous efficacy and color temperature. The small size of halogen lamps permits their use in compact optical systems for projectors and illumination. The small glass envelope may be enclosed in a much larger outer glass bulb for a bigger package; the outer jacket will be at a much lower and safer temperature, and it also protects the hot bulb from harmful contamination and makes the bulb mechanically more similar to a conventional lamp that it might replace.

Timeline of lighting technology

Artificial lighting technology began to be developed tens of thousands of years ago and continues to be refined in the present day.

Fluorescent lamp Light source

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than incandescent lamps. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output.

Photometry (optics)

Photometry is the science of the measurement of light, in terms of its perceived brightness to the human eye. It is distinct from radiometry, which is the science of measurement of radiant energy in terms of absolute power. In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way.

High-intensity discharge lamp Type of electric lamp/bulb

High-intensity discharge lamps are a type of electrical gas-discharge lamp which produces light by means of an electric arc between tungsten electrodes housed inside a translucent or transparent fused quartz or fused alumina arc tube. This tube is filled with noble gas and often also contains suitable metal or metal salts. The noble gas enables the arc's initial strike. Once the arc is started, it heats and evaporates the metallic admixture. Its presence in the arc plasma greatly increases the intensity of visible light produced by the arc for a given power input, as the metals have many emission spectral lines in the visible part of the spectrum. High-intensity discharge lamps are a type of arc lamp.

Mercury-vapor lamp Electric lighting source

A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.

Reef aquarium

A reef aquarium or reef tank is a marine aquarium that prominently displays live corals and other marine invertebrates as well as fish that play a role in maintaining the tropical coral reef environment. A reef aquarium requires appropriately intense lighting, turbulent water movement, and more stable water chemistry than fish-only marine aquaria, and careful consideration is given to which reef animals are appropriate and compatible with each other.

Marine aquarium

A marine aquarium is an aquarium that keeps marine plants and animals in a contained environment. Marine aquaria are further subdivided by hobbyists into fish only (FO), fish only with live rock (FOWLR), and reef aquaria. Fish only tanks often showcase large or aggressive marine fish species and generally rely on mechanical and chemical filtration. FOWLR and reef tanks use live rock, a material composed of coral skeletons harboring beneficial nitrogen waste metabolizing bacteria, as a means of more natural biological filtration.

Compact fluorescent lamp

A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent light bulb; some types fit into light fixtures designed for incandescent bulbs. The lamps use a tube which is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.

Street lighting in the United States was introduced to the US by inventor Benjamin Franklin, who was the postmaster of Philadelphia, Pennsylvania. For this reason, many regard Philadelphia as the birthplace of street lighting in the US.

Metal-halide lamp

A metal-halide lamp is an electrical lamp that produces light by an electric arc through a gaseous mixture of vaporized mercury and metal halides. It is a type of high-intensity discharge (HID) gas discharge lamp. Developed in the 1960s, they are similar to mercury vapor lamps, but contain additional metal halide compounds in the quartz arc tube, which improve the efficiency and color rendition of the light. The most common metal halide compound used is sodium iodide. Once the arc tube reaches its running temperature, the sodium dissociates from the iodine, adding orange and reds to the lamp's spectrum from the sodium D line as the metal ionizes. As a result, metal-halide lamps have high luminous efficacy of around 75–100 lumens per watt, which is about twice that of mercury vapor lights and 3 to 5 times that of incandescent lights and produce an intense white light. Lamp life is 6,000 to 15,000 hours. As one of the most efficient sources of high CRI white light, metal halides as of 2005 were the fastest growing segment of the lighting industry. They are used for wide area overhead lighting of commercial, industrial, and public places, such as parking lots, sports arenas, factories, and retail stores, as well as residential security lighting and automotive headlamps.

Hydrargyrum medium-arc iodide lamp

Hydrargyrum medium-arc iodide (HMI) is the trademark name of Osram's brand of metal-halide gas discharge medium arc-length lamp, made specifically for film and entertainment applications. Hydrargyrum comes from the Greek name for the element mercury.

Architectural lighting design Field within architecture, interior design and electrical engineering

Architectural lighting design is a field within architecture, interior design and electrical engineering that is concerned with the design of lighting systems, including natural light, electric light, or both, to serve human needs.

Full-spectrum light

Full-spectrum light is light that covers the electromagnetic spectrum from infrared to near-ultraviolet, or all wavelengths that are useful to plant or animal life; in particular, sunlight is considered full spectrum, even though the solar spectral distribution reaching Earth changes with time of day, latitude, and atmospheric conditions.

Gas-discharge lamp artificial light sources powered by ionized gas electric discharge

Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma. Typically, such lamps use a noble gas or a mixture of these gases. Some include additional substances, like mercury, sodium, and metal halides, which are vaporized during startup to become part of the gas mixture. In operation, some of the electrons are forced to leave the atoms of the gas near the anode by the electric field applied between the two electrodes, leaving these atoms positively ionized. The free electrons thus released flow onto the anode, while the cations thus formed are accelerated by the electric field and flow towards the cathode. Typically, after traveling a very short distance, the ions collide with neutral gas atoms, which transfer their electrons to the ions. The atoms which lost an electron during the collisions ionize and speed toward the cathode while the ions which gained an electron during the collisions return to a lower energy state while releasing energy in the form of photons. Light of a characteristic frequency is thus emitted. In this way, electrons are relayed through the gas from the cathode to the anode. The color of the light produced depends on the emission spectra of the atoms making up the gas, as well as the pressure of the gas, current density, and other variables. Gas discharge lamps can produce a wide range of colors. Some lamps produce ultraviolet radiation which is converted to visible light by a fluorescent coating on the inside of the lamp's glass surface. The fluorescent lamp is perhaps the best known gas-discharge lamp.

Growroom

A growroom or growth chamber is a room of any size where plants are grown under controlled conditions. The reasons for utilizing a growroom are countless. Some seek to avoid the criminal repercussions of growing illicit cultivars, while others simply have no alternative to indoor growing. Plants can be grown with the use of grow lights, sunlight, or a combination of the two. Due to the heat generated by high power lamps, grow rooms will often become excessively hot relative to the temperature range ideal for plant growth, often necessitating the use of a supplemental ventilation fan.

A grow light is an artificial light to help plants grow. Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour, temperatures and spectral outputs from the grow light, as well as varying the intensity of the lamps. Depending on the type of plant being cultivated, the stage of cultivation, and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and color temperature are desirable for use with specific plants and time periods.

LED lamp light source

An LED lamp or LED light bulb is an electric light for use in light fixtures that produces light using one or more light-emitting diodes (LEDs). LED lamps have a lifespan many times longer than equivalent incandescent lamps, and are significantly more efficient than most fluorescent lamps, with some manufacturers claiming LED chips with a luminous efficacy of up to 303 lumens per watt. However, LED lamps require an electronic LED driver circuit when operated from mains power lines, and losses from this circuit means that the efficiency of the lamp is lower than the efficiency of the LED chips it uses. The most efficient commercially available LED lamps have efficiencies of 200 lumens per watt (Lm/W). The LED lamp market is projected to grow by more than twelve-fold over the next decade, from $2 billion in the beginning of 2014 to $25 billion in 2023, a compound annual growth rate (CAGR) of 25%. As of 2016, many LEDs use only about 10% of the energy an incandescent lamp requires.