Archimedes number

Last updated

In viscous fluid dynamics, the Archimedes number (Ar), is a dimensionless number used to determine the motion of fluids due to density differences, named after the ancient Greek scientist and mathematician Archimedes.

Contents

It is the ratio of gravitational forces to viscous forces [1] and has the form: [2]

where:

Uses

The Archimedes number is generally used in design of tubular chemical process reactors. The following are non-exhaustive examples of using the Archimedes number in reactor design.

Packed-bed fluidization design

The Archimedes number is applied often in the engineering of packed beds, which are very common in the chemical processing industry. [3] A packed bed reactor, which is similar to the ideal plug flow reactor model, involves packing a tubular reactor with a solid catalyst, then passing incompressible or compressible fluids through the solid bed. [3] When the solid particles are small, they may be "fluidized", so that they act as if they were a fluid. When fluidizing a packed bed, the pressure of the working fluid is increased until the pressure drop between the bottom of the bed (where fluid enters) and the top of the bed (where fluid leaves) is equal to the weight of the packed solids. At this point, the velocity of the fluid is just not enough to achieve fluidization, and extra pressure is required to overcome the friction of particles with each other and the wall of the reactor, allowing fluidization to occur. This gives a minimum fluidization velocity, , that may be estimated by: [2] [4]

where:

Bubble column design

Another use is in the estimation of gas holdup in a bubble column. In a bubble column, the gas holdup (fraction of a bubble column that is gas at a given time) can be estimated by: [5]

where:

Spouted-bed minimum spouting velocity design

A spouted bed is used in drying and coating. It involves spraying a liquid into a bed packed with the solid to be coated. A fluidizing gas fed from the bottom of the bed causes a spout, which causes the solids to circle linearly around the liquid. [6] Work has been undertaken to model the minimum velocity of gas required for spouting in a spouted bed, including the use of artificial neural networks. Testing with such models found that Archimedes number is a parameter that has a very large effect on the minimum spouting velocity. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space.

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

<span class="mw-page-title-main">Terminal velocity</span> Highest velocity attainable by a falling object

Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid. It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration.

<span class="mw-page-title-main">Settling</span> Process by which particulates move towards the bottom of a liquid and form a sediment

Settling is the process by which particulates move towards the bottom of a liquid and form a sediment. Particles that experience a force, either due to gravity or due to centrifugal motion will tend to move in a uniform manner in the direction exerted by that force. For gravity settling, this means that the particles will tend to fall to the bottom of the vessel, forming sludge or slurry at the vessel base.

Quantum turbulence is the name given to the turbulent flow – the chaotic motion of a fluid at high flow rates – of quantum fluids, such as superfluids. The idea that a form of turbulence might be possible in a superfluid via the quantized vortex lines was first suggested by Richard Feynman. The dynamics of quantum fluids are governed by quantum mechanics, rather than classical physics which govern classical (ordinary) fluids. Some examples of quantum fluids include superfluid helium, Bose–Einstein condensates (BECs), polariton condensates, and nuclear pasta theorized to exist inside neutron stars. Quantum fluids exist at temperatures below the critical temperature at which Bose-Einstein condensation takes place.

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

<span class="mw-page-title-main">Cyclonic separation</span> Method of removing particulates from a fluid stream through vortex separation

Cyclonic separation is a method of removing particulates from an air, gas or liquid stream, without the use of filters, through vortex separation. When removing particulate matter from liquid, a hydrocyclone is used; while from gas, a gas cyclone is used. Rotational effects and gravity are used to separate mixtures of solids and fluids. The method can also be used to separate fine droplets of liquid from a gaseous stream.

<span class="mw-page-title-main">Rayleigh–Taylor instability</span> Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

<span class="mw-page-title-main">Perfect fluid</span> Fluid fully characterized by its density and isotropic pressure

In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame mass density and isotropic pressure p. Real fluids are "sticky" and contain heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction. Quark–gluon plasma is the closest known substance to a perfect fluid.

<span class="mw-page-title-main">Fluidized bed</span>

A fluidized bed is a physical phenomenon that occurs when a solid particulate substance is under the right conditions so that it behaves like a fluid. The usual way to achieve a fluidized bed is to pump pressurized fluid into the particles. The resulting medium then has many properties and characteristics of normal fluids, such as the ability to free-flow under gravity, or to be pumped using fluid technologies.

In fluid dynamics the Eötvös number (Eo), also called the Bond number (Bo), is a dimensionless number measuring the importance of gravitational forces compared to surface tension forces for the movement of liquid front. Alongside the Capillary number, commonly denoted , which represents the contribution of viscous drag, is useful for studying the movement of fluid in porous or granular media, such as soil. The Bond number is also used to characterize the shape of bubbles or drops moving in a surrounding fluid. The two names used for this dimensionless term commemorate the Hungarian physicist Loránd Eötvös (1848–1919) and the English physicist Wilfrid Noel Bond (1897–1937), respectively. The term Eötvös number is more frequently used in Europe, while Bond number is commonly used in other parts of the world.

The Ergun equation, derived by the Turkish chemical engineer Sabri Ergun in 1952, expresses the friction factor in a packed column as a function of the modified Reynolds number.

<span class="mw-page-title-main">Multiphase flow</span>

In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena.

In fluid dynamics, the Morton number (Mo) is a dimensionless number used together with the Eötvös number or Bond number to characterize the shape of bubbles or drops moving in a surrounding fluid or continuous phase, c. It is named after Rose Morton, who described it with W. L. Haberman in 1953.

In fluid dynamics, the Hadamard–Rybczynski equation gives the terminal velocity of slowly moving spherical bubble through an ambient fluid. It is named after Jacques Hadamard and Witold Rybczynski:

<span class="mw-page-title-main">Reynolds number</span> Dimensionless quantity in fluid mechanics

In fluid mechanics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. This method has proven to be stable in dense particle flows, computationally efficient, and physically accurate. This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.

<span class="mw-page-title-main">Rayleigh–Plesset equation</span>

In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is an ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid. Its general form is usually written as

References

  1. Wypych, George (2014). Handbook of Solvents, Volume 2 - Use, Health, and Environment (2nd ed.). ChemTec Publishing. p. 657.
  2. 1 2 3 Harnby, N; Edwards, MF; Nienow, AW (1992). Mixing in the Process Industries (2nd ed.). Elsevier. p. 64.
  3. 1 2 Nauman, E. Bruce (2008). Chemical Reactor Design, Optimization, and Scaleup (2nd ed.). John Wiley & Sons. p. 324.
  4. Önsan, Zeynep Ilsen; Avci, Ahmet Kerim (2016). Multiphase Catalytic Reactors - Theory, Design, Manufacturing, and Applications. John Wiley & Sons. p. 83.
  5. Feng, Dan; Ferrasse, Jean-Henry; Soric, Audrey; Boutin, Olivier (April 2019). "Bubble characterization and gas–liquid interfacial area in two phase gas–liquid system in bubble column at low Reynolds number and high temperature and pressure". Chem Eng Res Des. 144: 95–106. doi: 10.1016/j.cherd.2019.02.001 . S2CID   104422302.
  6. Yang, W-C (1998). Fluidization, Solids Handling, and Processing - Industrial Applications. William Andrew Publishing/Noyes. p. 335.
  7. Hosseini, SH; Rezaei, MJ; Bag-Mohammadi, M; Altzibar, H; Olazar, M (October 2018). "Smart models to predict the minimum spouting velocity of conical spouted beds with non-porous draft tube". Chem Eng Res Des. 138: 331–340. doi:10.1016/j.cherd.2018.08.034. S2CID   105461210.