Archosauromorpha

Last updated

Contents

Archosauromorphs
Temporal range: 260–0  Ma
O
S
D
C
P
T
J
K
Pg
N
Possible Middle Permian records
Archosauromorpha.jpg
Row 1: Sharovipteryx mirabilis and Crocodylus porosus
Row 2: Pardalotus punctatus and Hyperodapedon fischeri
Row 3: Tanystropheus longobardicus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Archelosauria
Clade: Archosauromorpha
von Huene, 1946
Subgroups

Archosauromorpha (Greek for "ruling lizard forms") is a clade of diapsid reptiles containing all reptiles more closely related to archosaurs (such as crocodilians and dinosaurs, including birds) rather than lepidosaurs (such as tuataras, lizards, and snakes). [1] Archosauromorphs first appeared during the late Middle Permian or Late Permian, [2] though they became much more common and diverse during the Triassic period. [3]

Although Archosauromorpha was first named in 1946, its membership did not become well-established until the 1980s. Currently Archosauromorpha encompasses four main groups of reptiles: the stocky, herbivorous allokotosaurs and rhynchosaurs, the hugely diverse Archosauriformes, and a polyphyletic grouping of various long-necked reptiles including Protorosaurus , tanystropheids, and Prolacerta . Other groups including pantestudines (turtles and their extinct relatives) and the semiaquatic choristoderes have also been placed in Archosauromorpha by some authors.

Archosauromorpha is one of the most diverse groups of reptiles, but its members can be united by several shared skeletal characteristics. These include laminae on the vertebrae, a posterodorsal process of the premaxilla, a lack of notochordal canals, and the loss of the entepicondylar foramen of the humerus. [1]

History and definition

The term Archosauromorpha was first used by Friedrich von Huene in 1946 to refer to reptiles more closely related to archosaurs than to lepidosaurs. However, there was little consensus on ancient reptile relationships prior to the late 20th century, so the term Archosauromorpha was seldom used until many years after its creation.

The advent of cladistics helped to sort out at least some of the relationships within Reptilia, and it became clear that there was a split between the archosaur lineage and the lepidosaur lineage somewhere within the Permian, with certain reptiles clearly closer to archosaurs and others allied with lepidosaurs. Jacques Gauthier reused the term Archosauromorpha for the archosaur lineage at the 1982 annual meeting of the American Society of Zoologists, and later used it within his 1984 Ph.D. thesis. [4] Archosauromorpha, as formulated by Gauthier, included four main groups of reptiles: Rhynchosauria, "Prolacertiformes", "Trilophosauria", and Archosauria (now equivalent to the group Archosauriformes). Cladistic analyses created during the 1980s by Gauthier, Michael J. Benton, and Susan E. Evans implemented Gauthier's classification scheme within large studies of reptile relations. [5] [4] [6]

Michel Laurin (1991) defined Archosauromorpha as the clade containing the most recent common ancestor of Prolacerta , Trilophosaurus , Hyperodapedon and all of its descendants. [7] David Dilkes (1998) formulated a more inclusive (and currently more popular) definition of Archosauromorpha, defining it as the clade containing Protorosaurus and all other saurians that are more closely related to Protorosaurus than to Lepidosauria. [8]

In 2016, Martin Ezcurra named a subgroup of Archosauromorpha, Crocopoda ("crocodile feet"). Crocopoda is defined as all archosauromorphs more closely related to allokotosaurs (specifically Azendohsaurus and Trilophosaurus ), rhynchosaurs (specifically Rhynchosaurus ), or archosauriforms (specifically Proterosuchus) rather than Protorosaurus or tanystropheids (specifically Tanystropheus ). This group roughly corresponds to Laurin's definition of Archosauromorpha. [1]

Members

Unambiguous members

An interaction between two archosauromorphs: Ornithosuchus ( a member of Archosauriformes) scavenging on Hyperodapedon (a rhynchosaur) Ornithosuchus1DB.jpg
An interaction between two archosauromorphs: Ornithosuchus ( a member of Archosauriformes) scavenging on Hyperodapedon (a rhynchosaur)

Since the seminal studies of the 1980s, Archosauromorpha has consistently been found to contain four specific reptile groups, although the definitions and validity of the groups themselves have been questioned. The least controversial group is Rhynchosauria ("beak reptiles"), a monophyletic clade of stocky herbivores. Many rhynchosaurs had highly modified skulls, with beak-like premaxillary bones and wide heads.

Shringasaurus, a horned allokotosaurian from the family Azendohsauridae. Shringasaurus indicus reconstruction.png
Shringasaurus , a horned allokotosaurian from the family Azendohsauridae.

Another group of archosauromorphs has traditionally been represented by Trilophosaurus, an unusual iguana-like herbivorous reptile quite different from the rhynchosaurs. Gauthier used the name "Trilophosauria" for this group, but a 2015 study offered an alternative name. This study found that Azendohsauridae, Triassic reptiles previously mistaken for "prosauropod" dinosaurs, were in fact close relatives of Trilophosaurus and the rest of Trilophosauridae. Trilophosaurids and azendohsaurids are now united under the group Allokotosauria ("strange reptiles"). [9] These two groups did not survive the end of the Triassic period, but the most famous group of archosauromorphs not only survived, but have continued to diversify and dominate beyond the Triassic-Jurassic extinction. These were the Archosauriformes, a diverse assortment of animals including the famous dinosaurs and pterosaurs. Two subclades of Archosauriformes survive to the present day: the semiaquatic crocodilians and the last of the feathered dinosaurs: birds. Gauthier used the name Archosauria to refer to what is now called the Archosauriformes; in modern studies, the name Archosauria has a more restricted definition that only includes the ancestors of crocodilians (i.e. Pseudosuchia) and birds (i.e. Avemetatarsalia).

The skeleton of Protorosaurus, one of the oldest archosauromorphs and namesake of the problematic group "Protorosauria" Protorosaurus speneri fossil.jpg
The skeleton of Protorosaurus , one of the oldest archosauromorphs and namesake of the problematic group "Protorosauria"

The final unambiguous members of Archosauromorpha represent the most controversial group. These were the first archosauromorphs to appear, and can be characterized by their long necks, sprawling posture, and carnivorous habits. One name for the group, Protorosauria, is named after Protorosaurus, the oldest archosauromorph known from good remains. Another name, Prolacertiformes, is in reference to a different member, Prolacerta. Protorosauria/Prolacertiformes has had a complicated history, and many taxa have entered and left the group as paleontologists discover and re-evaluate reptiles of the Triassic. By far the most famous of these are tanystropheids such as Tanystropheus, known for having necks longer than their entire body. Other notable genera include Boreopricea , Pamelaria , and Macrocnemus, as well as strange gliding reptiles such as Sharovipteryx and Mecistotrachelos . A landmark 1998 study by David Dilkes completely deconstructed the concept of Prolacertiformes as a traditional monophyletic group (i.e. one whose members have a single common ancestor). He argued that Prolacerta was much closer to Archosauriformes than to other "prolacertiforms", invalidating the name. [8] Likewise, Pamelaria is now considered an allokotosaur, Macrocnemus is a tanystropheid, and Protorosaurus may be too basal ("primitive") to form a clade with any of its supposed close relatives. [1] As such, this final group of Archosauromorpha is generally considered paraphyletic or polyphyletic, and few modern studies use it.

Disputed members

Champsosaurus, a gharial-like choristodere which survived the Cretaceous-Paleocene extinction event. Choristoderes may represent the fifth group of archosauromorphs, but their origin is obscured. Champsosaurus natator.jpg
Champsosaurus , a gharial-like choristodere which survived the Cretaceous-Paleocene extinction event. Choristoderes may represent the fifth group of archosauromorphs, but their origin is obscured.

Apart from these four groups, Archosauromorpha is sometimes considered to encompass several additional groups of reptiles. One of the most common additions is Choristodera, a group of semiaquatic reptiles with mysterious origins. Although choristodere fossils are only known from the Jurassic through the Miocene, it is theorized that they first appeared during the Permian alongside the earliest archosauromorphs. Choristoderes share numerous otherwise unique traits with archosauromorphs, but they share an equal or greater number of unique traits with lepidosauromorphs as well, so there is still some debate over their inclusion within either group. [6] [1] The chameleon- or tamandua-like drepanosaurs are also semi-regularly placed within Archosauromorpha, [8] although some studies have considered them to be part of a much more basal lineage of reptiles. [10] The aquatic thalattosaurs [6] and gliding kuehneosaurids [6] [10] are also irregularly considered archosauromorphs.

Genetic studies have found evidence that modern testudines (turtles and tortoises) are more closely related to crocodilians than to lizards. [11] [12] If this evidence is accurate, then turtles are part of basal Archosauromorpha. Likewise, extinct turtle relatives known as Pantestudines would also fall within Archosauromorpha. Some geneticists have proposed a name to refer to reptiles within the group formed by relatives of turtles and archosaurs. This name is the clade Archelosauria . Since Pantestudines may encompass the entire aquatic reptile order Sauropterygia, this means that Archosauromorpha (as Archelosauria) may be a much wider group than commonly believed. [13] However, anatomical data disagrees with this genetic evidence, instead placing Pantestudines within Lepidosauromorpha [14] but many modern studies have supported Archelosauria. Several recent studies place sauropterygians within Archosauromorpha group, forming a large clade including Ichthyosauromorpha and Thalattosauria as opposed to the Pantestudine relations. [15] [16] [17]

Anatomy

Although the most diverse clade of living archosauromorphs are birds, early members of the group were evidently reptilian, superficially similar to modern lizards. When archosauromorphs first appeared in the fossil record in the Permian, they were represented by long-necked, lightly built sprawling reptiles with moderately long, tapering snouts. This body plan, similar to that of modern monitor lizards, is also shared by Triassic archosauromorphs such as tanystropheids and Prolacerta. Other early groups such as trilohpsaurids, azendohsaurids, and rhynchosaurs deviate from this body plan by evolving into stockier forms with semi-erect postures and higher metabolisms. The archosauriforms went to further extremes of diversity, encompassing giant sauropod dinosaurs, flying pterosaurs and birds, semiaquatic crocodilians, phytosaurs, and proterochampsians, and apex predators such as erythrosuchids, pseudosuchians, and theropod dinosaurs. Despite the staggering diversity of archosauromorphs, they can still be united as a clade thanks to several subtle skeletal features. [1]

Skull

The skull of Proterosuchus, an early archosauriform. Note the long rear branch of the downturned premaxilla and the L-shaped quadratojugal near the jaw joint. Proterosuchus fergusi skull.png
The skull of Proterosuchus , an early archosauriform. Note the long rear branch of the downturned premaxilla and the L-shaped quadratojugal near the jaw joint.

Most archosauromorphs more "advanced" than Protorosaurus possessed an adaptation of the premaxilla (tooth-bearing bone at the tip of the snout) known as a posterodorsal or postnarial process. This was a rear-facing branch of bone that stretched up below and behind the external nares (nostril holes) to contact the nasal bones on the upper edge of the snout. A few advanced archosauriforms reacquired the plesiomorphic ("primitive") state present in other reptiles, that being a short or absent posterodorsal process of the premaxilla, with the rear edge of the nares formed primarily by the maxilla bones instead. As for the nares themselves, they were generally large and oval-shaped, positioned high and close to the midline of the skull. [4]

Many early archosauromorphs, including Protorosaurus, tanystropheids, Trilophosaurus, and derived rhynchosaurs, have a blade-like sagittal crest on the parietal bones at the rear part of the skull roof, between a pair of holes known as the supratemporal (or upper temporal) fenestrae. However, in other allokotosaurs, the basal rhynchosaur Mesosuchus , and more crownward archosauromorphs, the sagittal crest is weakly differentiated, although the inner edge of each supratemporal fenestra still possessed a depressed basin of bone known as a supratemporal fossa. Ezcurra (2016) argued that presence of supratemporal fossae and an absence or poor development of the sagittal crest could be used to characterize Crocopoda. He also noted that in almost all early archosauromorphs (and some choristoderes), the parietal bones have an additional lowered area which extends transversely (from left to right) behind the supratemporal fenestrae and sagittal crest (when applicable). [1]

The lower temporal fenestra is not fully enclosed in early archosauromorphs (and choristoderes) due to alterations to the structure of the quadratojugal bone at the rear lower corner of the skull. This bone is roughly L-shaped in these taxa, with a tall dorsal process (vertical branch), a short anterior process (forward branch), and a tiny or absent posterior process (rear branch). The bones surrounding the quadratojugal also reconfigure to offset the changes to the quadratojugal. For example, the lower branch of the squamosal bone is shortened to offset the tall dorsal process of quadratojugal which connects to it. On the other hand, the rear branch jugal bone lengthens to fill some of the space left by the shortening of the anterior process of the quadratojugal. [6] In archosauriforms, the jugal even re-encloses the lower temporal fenestra. The stapes are long, thin, and solid, without a perforating hole (stapedial foramen) present in the more robust stapes of other reptiles. [6]

Vertebrae

Cervical vertebrae from Diplodocus, a sauropod dinosaur (Archosauriformes). As with other long-necked archosauromorphs, sauropods had a complex system of laminae on their vertebrae. Diplodocus carnegii cervical vertebrae.png
Cervical vertebrae from Diplodocus , a sauropod dinosaur (Archosauriformes). As with other long-necked archosauromorphs, sauropods had a complex system of laminae on their vertebrae.

In conjunction with their long, S-shaped necks, early archosauromorphs had several adaptations of the cervical (neck) vertebrae, and usually the first few dorsal (back) vertebrae as well. The centrum (main body) of each vertebra is parallelogram-shaped, with a front surface typically positioned higher than the rear surface. [1] The transverse processes (rib facets) of these vertebrae extend outwards to a greater extent than in other early reptiles. In many long-necked archosauromorphs, the rib facets are slanted, connecting to cervical ribs that are often long, thin, and dichocephalous (two-headed). [18]

Thin, plate-like ridges known as laminae develop to connect the vertebral components, sloping down from the elongated transverse processes to the centra. Laminae are practically unique to archosauromorphs, being present even in the earliest Permian genera such as Aenigmastropheus and Eorasaurus. However, they are also known to occur in the bizarre semiaquatic reptile Helveticosaurus , [3] as well as the biarmosuchian synapsid Hipposaurus . [19] In all adult archosauromorphs with the exception of Aenigmastropheus, the vertebrae lack notochordal canals, holes which perforate the centra. This also sets the archosauromorphs apart from most other Permian and Triassic reptiles. [7] [3]

Forelimbs

The humerus (upper arm bone) is solid in archosauromorphs, completely lacking a hole near the elbow known as the entepicondylar foramen. This hole, present in most other tetrapods, is also absent in choristoderes yet not fully enclosed in some proterosuchids. In many advanced archosauromorphs, the capitulum and trochlea (elbow joints) of the humerus are poorly developed. Early archosauromorphs retain well-developed elbow joints, but all archosauromorphs apart from Aenigmastropheus have a trochlea (ulna joint) which is shifted towards the outer surface of the humerus, rather than the midpoint of the elbow as in other reptiles. In conjunction with this shift, the olecranon process of the ulna is poorly developed in archosauromorphs apart from Aenigmastropheus and Protorosaurus. [1]

Hindlimbs

The ankle bones of archosauromorphs tend to acquire complex structures and interactions with each other, and this is particularly the case with the large proximal tarsal bones: the astragalus and calcaneum. The calcaneum, for example, has a tube-like outer extension known as a calcaneal tuber in certain archosauromorphs. This tuber is particularly prominent in the ancient relatives of crocodylians, but it first appeared earlier at the last common ancestor of allokotosaurs, rhynchosaurs, and archosauriforms. The presence of a calcaneal tuber (sometimes known as a lateral tuber of the calcaneum) is a synapomorphy of the group Crocopoda, and is also responsible for its name. [1]

Relationships

The cladogram shown below follows the most likely result found by an analysis of turtle relationships using both fossil and genetic evidence by M.S. Lee, in 2013. [20]

Crown  Reptilia/
Sauria

The following cladogram is based on a large analysis of archosauriforms published by M.D. Ezcurra in 2016. [1]

Sauria

See also

Related Research Articles

<i>Dinocephalosaurus</i> Extinct genus of reptiles

Dinocephalosaurus is a genus of long necked, aquatic protorosaur that inhabited the Triassic seas of China. The genus contains the type and only known species, D. orientalis, which was named by Chun Li in 2003. Unlike other long-necked protorosaurs, Dinocephalosaurus convergently evolved a long neck not through elongation of individual neck vertebrae, but through the addition of neck vertebrae that each had a moderate length. As indicated by phylogenetic analyses, it belonged in a separate lineage that also included at least its closest relative Pectodens, which was named the Dinocephalosauridae in 2021. Like tanystropheids, however, Dinocephalosaurus probably used its long neck to hunt, utilizing the fang-like teeth of its jaws to ensnare prey; proposals that it employed suction feeding have not been universally accepted. It was probably a marine animal by necessity, as suggested by the poorly-ossified and paddle-like limbs which would have prevented it from going ashore.

<span class="mw-page-title-main">Archosauriformes</span> Clade of reptiles

Archosauriformes is a clade of diapsid reptiles encompassing archosaurs and some of their close relatives. It was defined by Jacques Gauthier (1994) as the clade stemming from the last common ancestor of Proterosuchidae and Archosauria. Phil Senter (2005) defined it as the most exclusive clade containing Proterosuchus and Archosauria. Archosauriforms are a branch of archosauromorphs which originated in the Late Permian and persist to the present day as the two surviving archosaur groups: crocodilians and birds.

<i>Tanystropheus</i> Extinct genus of reptiles

Tanystropheus is an extinct genus of archosauromorph reptile which lived during the Triassic Period in Europe, Asia, and North America. It is recognisable by its extremely elongated neck, longer than the torso and tail combined. The neck was composed of 13 vertebrae strengthened by extensive cervical ribs. Tanystropheus is one of the most well-described non-archosauriform archosauromorphs, known from numerous fossils, including nearly complete skeletons. Some species within the genus may have reached a total length of 6 meters (20 ft), making Tanystropheus the longest non-archosauriform archosauromorph as well. Tanystropheus is the namesake of the family Tanystropheidae, a clade collecting many long-necked Triassic archosauromorphs previously described as "protorosaurs" or "prolacertiforms".

<i>Proterosuchus</i> Extinct genus of reptiles from the Early Triassic of South Africa

Proterosuchus is an extinct genus of archosauriform reptiles that lived during the Early Triassic. It contains three valid species: the type species P. fergusi and the referred species P. alexanderi and P. goweri. All three species lived in what is now South Africa. The genus was named in 1903 by the South African paleontologist Robert Broom. The genus Chasmatosaurus is a junior synonym of Proterosuchus.

<i>Tasmaniosaurus</i> Extinct genus of reptiles

Tasmaniosaurus is an extinct genus of archosauromorph reptile known from the Knocklofty Formation of West Hobart, Tasmania, Australia. The type species is T. triassicus. This genus is notable not only due to being one of the most complete Australian Triassic reptiles known, but also due to being a very close relative of Archosauriformes. Once believed to be a proterosuchid, this taxon is now believed to have been intermediate between advanced non-archosauriform archosauromorphs such as Prolacerta, and basal archosauriforms such as Proterosuchus. Features traditionally used to define Archosauria and later Archosauriformes, such as the presence of an antorbital fenestra and serrated teeth, are now known to have evolved prior to those groups due to their presence in Tasmaniosaurus.

<i>Teraterpeton</i> Extinct genus of reptiles

Teraterpeton is an extinct genus of trilophosaurid archosauromorphs. It is known from a partial skeleton from the Late Triassic Wolfville Formation of Nova Scotia, described in 2003. It has many unique features seen in no other related form, including an elongated, toothless snout and large openings for the nostrils. Because of this, Teraterpeton was originally placed in its own family, Teraterpetidae, related to Trilophosaurus. Newer studies generally place it within Trilophosauridae.

<span class="mw-page-title-main">Proterochampsia</span> Extinct clade of reptiles

Proterochampsia is a clade of early archosauriform reptiles from the Triassic period. It includes the Proterochampsidae and probably also the Doswelliidae. Nesbitt (2011) defines Proterochampsia as a stem-based taxon that includes Proterochampsa and all forms more closely related to it than Euparkeria, Erythrosuchus, Passer domesticus, or Crocodylus niloticus. Therefore, the inclusion of Doswelliidae in it is dependent upon whether Doswellia and Proterochampsa form a monophyletic group to the exclusion of Archosauria and other related groups.

<i>Jesairosaurus</i> Extinct genus of reptiles

Jesairosaurus is an extinct genus of early archosauromorph reptile known from the Illizi Province of Algeria. It is known from a single species, Jesairosaurus lehmani. Although a potential relative of the long-necked tanystropheids, this lightly-built reptile could instead be characterized by its relatively short neck as well as various skull features.

<span class="mw-page-title-main">Protorosauria</span> Extinct order of reptiles

Protorosauria is an extinct, likely paraphyletic group of basal archosauromorph reptiles from the latest Middle Permian to the end of the Late Triassic of Asia, Europe and North America. It was named by the English anatomist and paleontologist Thomas Henry Huxley in 1871 as an order, originally to solely contain Protorosaurus. Other names which were once considered equivalent to Protorosauria include Prolacertiformes and Prolacertilia.

<i>Prolacerta</i> Extinct genus of reptile from the lower Triassic

Prolacerta is a genus of archosauromorph from the lower Triassic of South Africa and Antarctica. The only known species is Prolacerta broomi. The generic name Prolacerta is derived from Latin meaning “before lizard” and its species name broomi is in commemoration of the famous paleontologist Robert Broom, who discovered and studied many of the fossils found in rocks of the Karoo Supergroup. When first discovered, Prolacerta was considered to be ancestral to modern lizards, scientifically known as lacertilians. However, a study by Gow (1975) instead found that it shared more similarities with the lineage that would lead to archosaurs such as crocodilians and dinosaurs. Prolacerta is considered by modern paleontologists to be among the closest relatives of the Archosauriformes.

<i>Pamelaria</i> Extinct genus of reptiles

Pamelaria is an extinct genus of allokotosaurian archosauromorph reptile known from a single species, Pamelaria dolichotrachela, from the Middle Triassic of India. Pamelaria has sprawling legs, a long neck, and a pointed skull with nostrils positioned at the very tip of the snout. Among early archosauromorphs, Pamelaria is most similar to Prolacerta from the Early Triassic of South Africa and Antarctica. Both have been placed in the family Prolacertidae. Pamelaria, Prolacerta, and various other Permo-Triassic reptiles such as Protorosaurus and Tanystropheus have often been placed in a group of archosauromorphs called Protorosauria, which was regarded as one of the most basal group of archosauromorphs. However, more recent phylogenetic analyses indicate that Pamelaria and Prolacerta are more closely related to Archosauriformes than are Protorosaurus, Tanystropheus, and other protorosaurs, making Protorosauria a polyphyletic grouping.

<i>Prolacertoides</i> Extinct genus of reptiles

Prolacertoides is an extinct genus of archosauromorph reptile from the Early Triassic of China, the type species being Prolacertoides jimusarensis. Prolacertoides means 'like Prolacerta', in reference to Prolacerta, another genus of archosauromorph which Prolacertoides was once believed to have been closely related to. Prolacertoides is known from a single partial skull, IVPP V3233, which was discovered in Xinjiang in northwestern China. The locality of its discovery belongs to the Cangfanggou Group of the Jiucaiyuan Formation, which is dated to the Induan age of the very early Triassic.

<i>Eorasaurus</i> Extinct genus of reptiles

Eorasaurus is an extinct genus of archosauromorph reptile known from the middle Late Permian of Tatarstan, European Russia. It contains a single species, Eorasaurus olsoni. When originally described by Sennikov (1997), Eorasaurus was identified as an early archosauromorph and assigned to the family Protorosauridae, Ezcurra et al. (2014) and Ezcurra (2016) later reclassified Eorasaurus and placed it within the group Archosauriformes. Eorasaurus is based solely on scant fossil material from the neck region, and is thus considered an unstable taxon in phylogenetic analyses. If Eorasaurus is an archosauriform, it would be the oldest known member of the group and would pre-date the previous record holder.

<i>Aenigmastropheus</i> Extinct genus of reptiles

Aenigmastropheus is an extinct genus of early archosauromorph reptiles known from the middle Late Permian Usili Formation of Songea District, southern Tanzania. It contains a single species, Aenigmastropheus parringtoni, known solely from UMZC T836, a partial postcranial skeleton of a mature individual. It was collected in 1933, and first described in 1956, as a "problematic reptile" due to its unique morphology. Therefore, a binomial name was erected for this specimen in 2014. Aenigmastropheus was probably fully terrestrial.

<span class="mw-page-title-main">Prolacertidae</span> Extinct family of reptiles

Prolacertidae is an extinct family of archosauromorph reptiles that lived during the Early Triassic epoch. It was named in 1935 by the British palaeontologist Francis Rex Parrington to include the species Prolacerta broomi of South Africa and Antarctica. In 1979 a second species, Kadimakara australiensis, was described from Australia. Several other genera, such as Macrocnemus, Pamelaria and Prolacertoides, have also been assigned to this family in the past, but these have been placed elsewhere by later studies, leaving Prolacerta and Kadimakara as the only well-supported members.

<span class="mw-page-title-main">Allokotosauria</span> Extinct clade of reptiles

Allokotosauria is a clade of early archosauromorph reptiles from the Middle to Late Triassic known from Asia, Africa, North America and Europe. Allokotosauria was first described and named when a new monophyletic grouping of specialized herbivorous archosauromorphs was recovered by Sterling J. Nesbitt, John J. Flynn, Adam C. Pritchard, J. Michael Parrish, Lovasoa Ranivoharimanana and André R. Wyss in 2015. The name Allokotosauria is derived from Greek meaning "strange reptiles" in reference to unexpected grouping of early archosauromorph with a high disparity of features typically associated with herbivory.

<i>Ozimek volans</i> Extinct species of reptile

Ozimek is a genus of sharovipterygid archosauromorph reptile, known from Late Triassic deposits in Poland and closely related to the Kyrgyzstani Sharovipteryx. It contains one species, O. volans, named in 2016 by Jerzy Dzik and Tomasz Sulej. Like Sharovipteryx, Ozimek had long, slender limbs with the hindlimbs longer than the forelimbs; the hindlimbs likely supported gliding membranes as fossilized in Sharovipteryx. Another unusual characteristic was the shoulder girdle, where the massive coracoids formed a shield-like structure covering the bottom of the shoulder region that would have limited mobility. In other respects, such as its long neck, it was a typical member of the non-natural grouping Protorosauria. Phylogenetic analysis has indicated that it, possibly along with Sharovipteryx, may have been an unusual member of the protorosaur group Tanystropheidae, although further study of its anatomy is needed to resolve its precise relationships.

<i>Kadimakara australiensis</i> Extinct species of reptile

Kadimakara is an extinct genus of early archosauromorph reptile from the Arcadia Formation of Queensland, Australia. It was seemingly a very close relative of Prolacerta, a carnivorous reptile which possessed a moderately long neck. The generic name Kadimakara references prehistoric creatures from Aboriginal myths which may have been inspired by ice-age megafauna. The specific name K. australiensis relates to the fact that it was found in Australia. Prolacerta and Kadimakara were closely related to the Archosauriformes, a successful group which includes archosaurs such as crocodilians, pterosaurs, and dinosaurs.

Boreopricea is an extinct genus of archosauromorph reptile from the Early Triassic of arctic Russia. It is known from a fairly complete skeleton discovered in a borehole on Kolguyev Island, though damage to the specimen and loss of certain bones has complicated study of the genus. Boreopricea shared many similarities with various other archosauromorphs, making its classification controversial. Various studies have considered it a close relative of Prolacerta, tanystropheids, both, or neither. Boreopricea is unique among early archosauromorphs due to possessing contact between the jugal and squamosal bones at the rear half of the skull.

<i>Elessaurus</i> Extinct genus of reptiles

Elessaurus is an extinct genus of archosauromorph from the Early Triassic of Brazil. It contains a single species, Elessaurus gondwanoccidens. It possessed a variety of features common to basal archosauromorphs, particularly basal tanystropheids such as Macrocnemus. However, it is uncertain whether Elessaurus was a particularly close relative of tanystropheids, and it might instead be closer to other major archosauromorph clades. The genus name refers to "Elessar", an alternate name of the character Aragorn from J.R.R. Tolkien's Lord of the Rings trilogy.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Ezcurra, Martín D. (2016-04-28). "The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms". PeerJ. 4: e1778. doi: 10.7717/peerj.1778 . ISSN   2167-8359. PMC   4860341 . PMID   27162705.
  2. Martinelli, Agustín G.; Francischini, Heitor; Dentzien-Dias, Paula C.; Soares, Marina B.; Schultz, Cesar L. (2017-01-02). "The oldest archosauromorph from South America: postcranial remains from the Guadalupian (mid-Permian) Rio do Rasto Formation (Paraná Basin), southern Brazil". Historical Biology. 29 (1): 76–84. Bibcode:2017HBio...29...76M. doi:10.1080/08912963.2015.1125897. ISSN   0891-2963. S2CID   86151472.
  3. 1 2 3 Butler, Richard J.; Scheyer, Torsten M.; Ezcurra, Martín D. (2014-02-27). "The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence". PLOS ONE. 9 (2): e89165. Bibcode:2014PLoSO...989165E. doi: 10.1371/journal.pone.0089165 . ISSN   1932-6203. PMC   3937355 . PMID   24586565.
  4. 1 2 3 Jacques Gauthier; Arnold G. Kluge; Timothy Rowe (1988). "Amniote phylogeny and the importance of fossils" (PDF). Cladistics . 4 (2): 105–209. doi:10.1111/j.1096-0031.1988.tb00514.x. hdl: 2027.42/73857 . PMID   34949076. S2CID   83502693.
  5. Benton, Michael J. (1985-06-01). "Classification and phylogeny of the diapsid reptiles". Zoological Journal of the Linnean Society. 84 (2): 97–164. doi:10.1111/j.1096-3642.1985.tb01796.x. ISSN   0024-4082.
  6. 1 2 3 4 5 6 Evans, Susan E. (1988). "The early history and relationships of the Diapsida". In Benton, M. J. (ed.). The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds. Oxford: Clarendon Press. pp. 221–260.
  7. 1 2 Michel Laurin (1991). "The osteology of a Lower Permian eosuchian from Texas and a review of diapsid phylogeny". Zoological Journal of the Linnean Society. 101 (1): 59–95. doi:10.1111/j.1096-3642.1991.tb00886.x.
  8. 1 2 3 David M. Dilkes (1998). "The Early Triassic rhynchosaur Mesosuchus browni and the interrelationships of basal archosauromorph reptiles". Philosophical Transactions of the Royal Society of London, Series B. 353 (1368): 501–541. doi:10.1098/rstb.1998.0225. PMC   1692244 .
  9. Nesbitt, Sterling J.; Flynn, John J.; Pritchard, Adam C.; Parrish, J. Michael; Ranivoharimanana, Lovasoa; Wyss, André R. (2015-12-07). "Postcranial Osteology of Azendohsaurus madagaskarensis (?Middle to Upper Triassic, Isalo Group, Madagascar) and its Systematic Position Among Stem Archosaur Reptiles" (PDF). Bulletin of the American Museum of Natural History. 398: 1–126. doi:10.5531/sd.sp.15. hdl: 2246/6624 . ISSN   0003-0090.
  10. 1 2 Pritchard, Adam C.; Nesbitt, Sterling J. (2017-10-01). "A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida". Royal Society Open Science. 4 (10): 170499. Bibcode:2017RSOS....470499P. doi:10.1098/rsos.170499. ISSN   2054-5703. PMC   5666248 . PMID   29134065.
  11. Bhart-Anjan S. Bhullar; Gabe S. Bever (2009). "An archosaur-like laterosphenoid in early turtles (Reptilia: Pantestudines)" (PDF). Breviora. 518: 1–11. doi:10.3099/0006-9698-518.1.1. S2CID   42333056.
  12. Sean Modesto; Robert Reisz; Diane Scott (2011). "A neodiapsid reptile from the Lower Permian of Oklahoma". Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts: 160.
  13. John W. Merck (1997). "A phylogenetic analysis of the euryapsid reptiles". Journal of Vertebrate Paleontology. 17 (Supplement to 3): 1–93. doi:10.1080/02724634.1997.10011028.
  14. Rieppel, Olivier (1999-02-12). "Turtle Origins". Science. 283 (5404): 945–946. doi:10.1126/science.283.5404.945. ISSN   1095-9203. PMID   10075558. S2CID   42475241.
  15. Neenan, J. M.; Klein, N.; Scheyer, T. M. (2013). "European origin of placodont marine reptiles and the evolution of crushing dentition in Placodontia". Nature Communications. 4: 1621. Bibcode:2013NatCo...4.1621N. doi: 10.1038/ncomms2633 . PMID   23535642.
  16. Simões, T.; Kammerer, C. (August 2022). "Successive climate crises in the deep past drove the early evolution and radiation of reptiles". ScienceAdvances. 08 (33): eabq1898. Bibcode:2022SciA....8.1898S. doi: 10.1126/sciadv.abq1898 . PMC   9390993 . PMID   35984885. S2CID   251694019.
  17. Wang, W.; Shang, Q. (December 2022). "Ancestral body plan and adaptive radiation of sauropterygian marine reptiles". iScience. 25 (12). Bibcode:2022iSci...25j5635W. doi:10.1016/j.isci.2022.105635. PMC   9722468 . PMID   36483013.
  18. Pritchard, Adam C.; Turner, Alan H.; Nesbitt, Sterling J.; Irmis, Randall B.; Smith, Nathan D. (2015-03-04). "Late Triassic tanystropheids (Reptilia, Archosauromorpha) from northern New Mexico (Petrified Forest Member, Chinle Formation) and the biogeography, functional morphology, and evolution of Tanystropheidae". Journal of Vertebrate Paleontology. 35 (2): e911186. Bibcode:2015JVPal..35E1186P. doi:10.1080/02724634.2014.911186. ISSN   0272-4634. S2CID   130089407.
  19. Peecook; et al. (2018). "VERTEBRAL OSTEOLOGY OF HIPPOSAURUS BOONSTRAI (THERAPSIDA, BIARMOSUCHIA) FROM THE MIDDLE PERMIAN OF SOUTH AFRICA, WITH IMPLICATIONS FOR THE EVOLUTION OF ARCHOSAUROMORPHA". SVP 2018. Archived from the original on 2018-10-22. Retrieved 2018-12-13.
  20. Lee, M. S. Y. (2013). "Turtle origins: Insights from phylogenetic retrofitting and molecular scaffolds". Journal of Evolutionary Biology. 26 (12): 2729–38. doi: 10.1111/jeb.12268 . PMID   24256520. S2CID   2106400.