Artificial human companion

Last updated

Artificial human companions may be any kind of hardware or software creation designed to give companionship to a person. [1] These can include digital pets, such as the popular Tamagotchi, or robots, such as the Sony AIBO. Virtual companions can be used as a form of entertainment, or they can be medical or functional, to assist the elderly in maintaining an acceptable standard of life.

Contents

Introduction

Senior citizens make up an increasing percentage of the population in the Western nations, and, according to Judith Masthoff of the University of Brighton, they tend to live alone and have a limited social network. [2] Studies also show that those elderly living in such circumstances have an increased risk of developing depression and dementia and have a shorter life span than more socially connected seniors. [3]

It has been known to gerontologists for some time that pets -- particularly those such as cats and dogs that exhibit a range of behaviors and emotions -- help prevent depression in the elderly. Studies also show some beneficial results from electronic pets such as Sony's Aibo and Omron's NeCoRo; however, the therapeutic value of such artificial pets remains limited by the capabilities of technology. A recent solution to physical limitations of technology comes from GeriJoy, in the form of virtual pets for seniors. Seniors can interact with GeriJoy's pets by petting them through the multitouch interface of standard consumer-grade tablets, and can even have intelligent conversations with the pets.

Television viewing among the elderly represents a significant percentage of how their waking hours are spent, and the percentage increases directly with age. Seniors typically watch TV to avoid loneliness; yet TV limits social interaction, thus creating a vicious circle.

Masthoff purports that it is possible to develop an interactive, personalized form of television that would allow the viewer to engage in natural conversation and learn from these conversations, as well as becoming more physically active which can help in the management of Type 2 Diabetes. [4]

Such applications have existed for decades. The earliest, such as the "psychologist" program ELIZA , did little more than identify key words and feed them back to the user, but Kenneth Colby's 1972 PARRY program at Stanford University -- far superior to ELIZA -- exhibited many of the features researchers now seek to put into a dialog system, above all some form of emotional response and having something "it wants to say", rather than being completely passive like ELIZA. The Internet now has a wide range of chatterbots but they are no more advanced, in terms of plausibility as conversationalists, than the systems of forty years ago and most users tire of them after a couple of exchanges. Meanwhile, two developments have advanced the field in different ways: first, the Loebner Prize, an annual competition for the best computer conversationalist, substantially advanced performance. Its winners could be considered the best chatterbots, but even they never approach a human level of capacity as can be seen from the site.

Secondly a great deal of industrial and academic research has gone into effective conversationalists, usually for specific tasks, such as selling rail or airline tickets. The core issue in all such systems is the dialog manager which is the element of system that determines what the system should say next and so appear intelligent or compliant with the task at hand. This research, along with work on computing emotion, speech research and Embodied Conversational Agents (ECAs) has led to the beginnings of more companionable systems, particularly for the elderly. The EU supported Companions Project is a 4-year, 15-site project to build such companions, based at the University of Sheffield.

Technology and artificial human companions in social work

Historically, the concept of artificial intelligence (AI) has rapidly changed numerous forms of society and different workforces. The field in it is focusing on, that being Social Work, demonstrates one of the numerous workforces that can and has utilized the benefits of AI. Social work is a field that can especially benefit from AI, because of the expansive number of fields that it has. As an example, Social Work can focus on the medical field, geriatrics, group work, and many more fields. In Narula's article, many forms and examples of AI are given, and a number of those examples are applicable to the field of Social Work, especially within the medical and geriatric fields. Within the realm of geriatric Social Work, in the last decades, it has been increasing dependent on AI's fraud prevention within banking systems. [5] Because older adults are more vulnerable to financial manipulation and abuse, this system of AI is especially integral for the protection of the geriatric population.

However, there are other realms of social work that have seen beneficial change from AI over the past decades. One example, is the use of AI-assisted online social therapy groups. D'Alfonso wrote about the implications of AI within social support groups, stating that “integration of user experience with a sophisticated and cutting-edge technology to deliver content is necessary to redefine online interventions in youth mental health”. [6] The form of AI is especially beneficial and necessary due to the cost-effective and engaging nature. [7] Also, forms of surveillance, brought up by Quan-Haase, demonstrate AI and technology's growing prominence and beneficial nature within Social Work. The changes of surveillance highlight these changes, especially the nature of the functional view, in which surveillance and AI are essential in the protection and safety of society. [8]

In addition, there are other forms of AI that could contribute to the future of social work. De Greeff and Belpaeme write that the social learning of social robots has increased and become more prominent in coming decades. It is written that “social robots often tend to be designed to portray a character, thus stimulating their anthropomorphisation by human interactants and inviting an interaction-style that is natural to people. Both a robot's appearance and behaviour can strengthen interactants' interpretation of dealing with a social agent, rather than with a piece of equipment”. [9] This substantiates that robots and AI are in the process of being used for communication and support for humans, and AI is used in order to allow technology and robots to become adept at linguistics and social cues. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Artificial intelligence</span> Intelligence of machines or software

Artificial intelligence (AI) is the intelligence of machines or software, as opposed to the intelligence of humans or animals. It is also the field of study in computer science that develops and studies intelligent machines. "AI" may also refer to the machines themselves.

<span class="mw-page-title-main">Friendly artificial intelligence</span> AI to benefit humanity

Friendly artificial intelligence is hypothetical artificial general intelligence (AGI) that would have a positive (benign) effect on humanity or at least align with human interests or contribute to fostering the improvement of the human species. It is a part of the ethics of artificial intelligence and is closely related to machine ethics. While machine ethics is concerned with how an artificially intelligent agent should behave, friendly artificial intelligence research is focused on how to practically bring about this behavior and ensuring it is adequately constrained.

<span class="mw-page-title-main">Cynthia Breazeal</span> American computer scientist

Cynthia Breazeal is an American robotics scientist and entrepreneur. She is a former chief scientist and chief experience officer of Jibo, a company she co-founded in 2012 that developed personal assistant robots. Currently, she is a professor of media arts and sciences at MIT and the director of the Personal Robots group at the Media Lab. Her most recent work has focused on the theme of living everyday life in the presence of AI, and gradually gaining insight into the long-term impacts of social robots.

Jabberwacky is a chatterbot created by British programmer Rollo Carpenter. Its stated aim is to "simulate natural human chat in an interesting, entertaining and humorous manner". It is an early attempt at creating an artificial intelligence through human interaction.

<span class="mw-page-title-main">AI takeover</span> Hypothetical artificial intelligence scenario

An AI takeover is a hypothetical scenario in which artificial intelligence (AI) becomes the dominant form of intelligence on Earth, as computer programs or robots effectively take control of the planet away from the human species. Possible scenarios include replacement of the entire human workforce, takeover by a superintelligent AI, and the popular notion of a robot uprising. Stories of AI takeovers are very popular throughout science fiction. Some public figures, such as Stephen Hawking and Elon Musk, have advocated research into precautionary measures to ensure future superintelligent machines remain under human control.

An entertainment robot is, as the name indicates, a robot that is not made for utilitarian use, as in production or domestic services, but for the sole subjective pleasure of the human. It serves, usually the owner or his housemates, guests, or clients. Robotic technologies are applied in many areas of culture and entertainment.

<span class="mw-page-title-main">Weak artificial intelligence</span> Form of artificial intelligence

Weak artificial intelligence is artificial intelligence that implements a limited part of mind, or, as narrow AI, is focused on one narrow task. In John Searle's terms it “would be useful for testing hypotheses about minds, but would not actually be minds”. Weak artificial intelligence focuses on mimicking how humans perform basic actions such as remembering things, perceiving things, and solving simple problems. As opposed to strong AI, which uses technology to be able to think and learn on its own. Computers are able to use methods such as algorithms and prior knowledge to develop their own ways of thinking like human beings do. Strong artificial intelligence systems are learning how to run independently of the programmers who programmed them. Weak AI is not able to have a mind of its own, and can only imitate physical behaviors that it can observe.

In video games, artificial intelligence (AI) is used to generate responsive, adaptive or intelligent behaviors primarily in non-player characters (NPCs) similar to human-like intelligence. Artificial intelligence has been an integral part of video games since their inception in the 1950s. AI in video games is a distinct subfield and differs from academic AI. It serves to improve the game-player experience rather than machine learning or decision making. During the golden age of arcade video games the idea of AI opponents was largely popularized in the form of graduated difficulty levels, distinct movement patterns, and in-game events dependent on the player's input. Modern games often implement existing techniques such as pathfinding and decision trees to guide the actions of NPCs. AI is often used in mechanisms which are not immediately visible to the user, such as data mining and procedural-content generation.

Human–robot interaction (HRI) is the study of interactions between humans and robots. Human–robot interaction is a multidisciplinary field with contributions from human–computer interaction, artificial intelligence, robotics, natural language processing, design, and psychology. A subfield known as physical human–robot interaction (pHRI) has tended to focus on device design to enable people to safely interact with robotic systems.

<span class="mw-page-title-main">Emerging technologies</span> Technologies whose development, practical applications, or both are still largely unrealized

Emerging technologies are technologies whose development, practical applications, or both are still largely unrealized. These technologies are generally new but also include older technologies finding new applications. Emerging technologies are often perceived as capable of changing the status quo.

<span class="mw-page-title-main">Outline of artificial intelligence</span> Overview of and topical guide to artificial intelligence

The following outline is provided as an overview of and topical guide to artificial intelligence:

Robot ethics, sometimes known as "roboethics", concerns ethical problems that occur with robots, such as whether robots pose a threat to humans in the long or short run, whether some uses of robots are problematic, and how robots should be designed such that they act 'ethically'. Alternatively, roboethics refers specifically to the ethics of human behavior towards robots, as robots become increasingly advanced. Robot ethics is a sub-field of ethics of technology, specifically information technology, and it has close links to legal as well as socio-economic concerns. Researchers from diverse areas are beginning to tackle ethical questions about creating robotic technology and implementing it in societies, in a way that will still ensure the safety of the human race.

<span class="mw-page-title-main">Ethics of artificial intelligence</span> Ethical issues specific to AI

The ethics of artificial intelligence is the branch of the ethics of technology specific to artificially intelligent systems. It is sometimes divided into a concern with the moral behavior of humans as they design, make, use and treat artificially intelligent systems, and a concern with the behavior of machines, in machine ethics.

The Tamagotchi effect is the development of emotional attachment with machines, robots or software agents. It has been noticed that humans tend to attach emotionally to things which otherwise do not have any emotions. For example, there are instances when people feel emotional about using their car keys, or with virtual pets. It is more prominent in applications which reflect some aspects of human behavior or characteristics, especially levels of artificial intelligence and automated knowledge processing.

<span class="mw-page-title-main">Sex robot</span> Hypothetical anthropomorphic robot sex doll

Sex robots or sexbots are anthropomorphic robotic sex dolls that have a humanoid form, human-like movement or behavior, and some degree of artificial intelligence. As of 2018, although elaborately instrumented sex dolls have been created by a number of inventors, no fully animated sex robots yet exist. Simple devices have been created which can speak, make facial expressions, or respond to touch.

Machine ethics is a part of the ethics of artificial intelligence concerned with adding or ensuring moral behaviors of man-made machines that use artificial intelligence, otherwise known as artificial intelligent agents. Machine ethics differs from other ethical fields related to engineering and technology. Machine ethics should not be confused with computer ethics, which focuses on human use of computers. It should also be distinguished from the philosophy of technology, which concerns itself with the grander social effects of technology.

Artificial empathy or computational empathy is the development of AI systems—such as companion robots or virtual agents—that can detect emotions and respond to them in an empathic way.

<span class="mw-page-title-main">Artificial intelligence in government</span> Use of AI in government areas

Artificial intelligence (AI) has a range of uses in government. It can be used to further public policy objectives, as well as assist the public to interact with the government. According to the Harvard Business Review, "Applications of artificial intelligence to the public sector are broad and growing, with early experiments taking place around the world." Hila Mehr from the Ash Center for Democratic Governance and Innovation at Harvard University notes that AI in government is not new, with postal services using machine methods in the late 1990s to recognise handwriting on envelopes to automatically route letters. The use of AI in government comes with significant benefits, including efficiencies resulting in cost savings, and reducing the opportunities for corruption. However, it also carries risks.

<span class="mw-page-title-main">Artificial intelligence in hiring</span> AI application in work environments

Artificial intelligence (AI) in hiring involves the use of technology to automate aspects of the hiring process. Advances in artificial intelligence, such as the advent of machine learning and the growth of big data, enable AI to be utilized to recruit, screen, and predict the success of applicants. Proponents of artificial intelligence in hiring claim it reduces bias, assists with finding qualified candidates, and frees up human resource workers' time for other tasks, while opponents worry that AI perpetuates inequalities in the workplace and will eliminate jobs.

References

  1. "Computer Science for Fun - cs4fn: Future friends who get around". www.cs4fn.org. Retrieved 2020-04-13.
  2. Masthoff, Judith; Mobasher, Bamshad; Desmarais, Michel; Nkambou, Roger (2012-06-19). User Modeling, Adaptation, and Personalization: 20th International Conference, UMAP 2012, Montreal, Canada, July 16-20, 2012 Proceedings. Springer. ISBN   978-3-642-31454-4.
  3. "Living alone". Alzheimer's Society. Retrieved 2020-04-13.
  4. "Judith Masthoff - Google Scholar Citations". scholar.google.com. Retrieved 2020-04-13.
  5. Narula, G. (2019, January 9). Everyday Examples of Artificial Intelligence and Machine Learning | Emerj - Artificial Intelligence Research and Insight. Retrieved January 13, 2019, from https://emerj.com/ai-sector-overviews/everyday-examples-of-ai/
  6. D'Alfonso, S., Santesteban-Echarri, O., Rice, S., Wadley, G., Lederman, R., Miles, C., Gleeson, J., … Alvarez-Jimenez, M. (2017). Artificial Intelligence-Assisted Online Social Therapy for Youth Mental Health. Frontiers in psychology, 8, 796. doi:10.3389/fpsyg.2017.00796
  7. D'Alfonso, S., Santesteban-Echarri, O., Rice, S., Wadley, G., Lederman, R., Miles, C., Gleeson, J., … Alvarez-Jimenez, M. (2017). Artificial Intelligence-Assisted Online Social Therapy for Youth Mental Health. Frontiers in psychology, 8, 796. doi:10.3389/fpsyg.2017.00796
  8. Quan-Haase, A. (2017). Technology & Society: Social Networks, Power, and Inequality. Vancouver, B.C.: Langara College.
  9. de Greeff, J., & Belpaeme, T. (2015). Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction. PLoS ONE, 10(9). Retrieved from http://link.galegroup.com.ezproxy.bethel.edu/apps/doc/A430359431/EAIM?u=clic_bethel&sid=EAIM&xid=3ba80295
  10. de Greeff, J., & Belpaeme, T. (2015). Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction. PLoS ONE, 10(9). Retrieved from http://link.galegroup.com.ezproxy.bethel.edu/apps/doc/A430359431/EAIM?u=clic_bethel&sid=EAIM&xid=3ba80295