Aurelia aurita

Last updated

Aurelia aurita
Moon jellyfish at Gota Sagher.JPG
Aurelia aurita, Red Sea
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Scyphozoa
Order: Semaeostomeae
Family: Ulmaridae
Genus: Aurelia
Species:
A. aurita
Binomial name
Aurelia aurita
Synonyms [1]
  • Aurellia flavidulaPeron & Lesueur, 1810
  • Medusa auritaLinnaeus, 1758
  • Medusa purpureaPennant, 1777

Aurelia aurita (also called the common jellyfish, moon jellyfish, moon jelly or saucer jelly) is a species of the family Ulmaridae. [1] [2] All species in the genus are very similar, and it is difficult to identify Aurelia medusae without genetic sampling; [3] most of what follows applies equally to all species of the genus.

Contents

The jellyfish is almost entirely translucent, usually about 25–40 cm (10–16 in) in diameter, and can be recognized by its four horseshoe-shaped gonads, easily seen through the top of the bell. It feeds by collecting medusae, plankton, and mollusks with its tentacles, and bringing them into its body for digestion. It is capable of only limited motion, and drifts with the current, even when swimming.

The moon jelly differs from many jellyfish in that they lack long, potent stinging tentacles. Instead they have hundreds of short, fine tentacles that line the bell margin. The sting has no effect on humans.

Distribution

The species Aurelia aurita is found in the North, Black, Baltic and Caspian Seas, Northeast Atlantic, Greenland, northeastern USA and Canada, Northwest Pacific and South America. [3] [4] [5] In general, Aurelia is an inshore genus that can be found in estuaries and harbors. [6]

Moon jellyfish swimming (high resolution)

Aurelia aurita lives in ocean water temperatures ranging from 6–31 °C (43–88 °F); with optimum temperatures of 9–19 °C (48–66 °F). It prefers temperate seas with consistent currents. It has been found in waters with salinity as low as 6 parts per thousand. [7] The relation between summer hypoxia and moon jellyfish distribution is prominent during the summer months of July and August where temperatures are high and dissolved oxygen (DO) is low. Of the three environmental conditions tested, bottom DO has the most significant effect on moon jellyfish abundance. Moon jellyfish abundance is the highest when bottom dissolved oxygen concentration is lower than 2.0 mg L−1. [8] Moon jellyfish show a strong tolerance to low DO conditions, which is why their population is still relatively high during the summer. Generally, hypoxia causes species to move from the oxygen depleted zone, but this is not the case for the moon jellyfish. Furthermore, bell contract rate, which indicates moon jellyfish feeding activity, remains constant although DO concentrations are lower than normal. [8] During July and August, it is observed that moon jellyfish aggregations of 250 individuals consumed an estimated 100% of the mesozooplankton biomass in the Seto Inland Sea. [9] Other major fish predators that are also present in these coastal waters do not seem to show the same high tolerance to low DO concentrations that the moon jellyfish exhibit. The feeding and predatory performance of these fish significantly decreases when DO concentrations are so low. This allows for less competition between the moon jellyfish and other fish predators for zooplankton. Low DO concentrations in coastal waters such as Tokyo Bay in Japan and the Seto Inland Sea prove to be advantageous for the moon jellyfish in terms of feeding, growth, and survival.

Feeding

Aurelia aurita and other Aurelia species feed on plankton that includes organisms such as mollusks, crustaceans, tunicate larvae, rotifers, young polychaetes, protozoans, diatoms, eggs, fish eggs, and other small organisms. Occasionally, they are also seen feeding on gelatinous zooplankton such as hydromedusae and ctenophores. [7] Both the adult medusae and larvae of Aurelia have nematocysts to capture prey and to protect themselves from predators.

The food is caught with its nematocyst-laden tentacles, tied with mucus, brought to the gastrovascular cavity, and passed into the cavity by ciliated action. There, digestive enzymes from serous cells break down the food. Little is known about the requirements for particular vitamins and minerals, but due to the presence of some digestive enzymes, we can deduce in general that A. aurita can process carbohydrates, proteins, and lipids. [10]

Body system

Aurelia with an anomalous number of gonads--most have four. Moon jellyfish with six gonads.jpg
Aurelia with an anomalous number of gonads—most have four.

Aurelia does not have respiratory parts such as gills, lungs, or trachea; it respires by diffusing oxygen from water through the thin membrane covering its body. Within the gastrovascular cavity, low oxygenated water can be expelled and high oxygenated water can come in by ciliated action, thus increasing the diffusion of oxygen through the cell. [11] The large surface area membrane to volume ratio helps Aurelia diffuse more oxygen and nutrients into the cells.

The basic body plan of Aurelia consists of several parts. The animal lacks respiratory, excretory, and circulatory systems. The adult medusa of Aurelia, with a transparent look, has an umbrella margin membrane and tentacles that are attached to the bottom. [6] It has four bright gonads that are under the stomach. [6] Food travels through the muscular manubrium while the radial canals help disperse the food. [6] There is a middle layer of mesoglea, a gastrodervascular cavity with a gastrodermis, and an epidermis. [12] There is a nerve net that is responsible for contractions in swimming muscles and feeding responses. [10] Adult medusae can have diameters up to 40 cm (16 in). [10]

The medusae are either male or female. [10] The young larval stage, a planula, has small ciliated cells and after swimming freely in the plankton for a day or more, settles on an appropriate substrate, where it changes into a special type of polyp called a "scyphistoma", which divides by strobilation into small ephyrae that swim off to grow up as medusae. [13] [14] There is an increasing size from starting stage planula to ephyra, from less than 1 mm in the planula stage, up to about 1 cm in ephyra stage, and then to several cm in diameter in the medusa stage. [6]

A recent study has found that A. aurita are capable of life cycle reversal where individuals grow younger instead of older, akin to the "immortal jellyfish" Turritopsis dohrnii . [15]

There has been a study presenting that Aurelia's body system is not significantly affected by artificial materials like microbeads, which can be found in cosmetic and personal care products. Aurelia aurita was able to recognize that microbeads were not food so there was not any physiological or histological harm. [16]

Predators

Three moon jellies captured by a lion's mane jellyfish Three moon jellyfishes captured by a lion's mane jellyfish 1.jpg
Three moon jellies captured by a lion's mane jellyfish

Aurelia aurita have high proportions of polyunsaturated fatty acids comparative to other prey types which provides vital nutritions to predators. [17] Aurelia aurita are known to be eaten by a wide variety of predators, including the ocean sunfish (Mola mola), the leatherback sea turtle (Dermochelys coriacea), the scyphomedusa Phacellophora camtschatica , [18] [19] and a very large hydromedusa ( Aequorea victoria ). [10] In 2016, it was reported from the Red Sea that Aurelia aurita was seasonally preyed upon by two herbivorous fish. [20] Moon jellies are also fed upon by sea birds, which may be more interested in the amphipods and other small arthropods that frequent the bells of Aurelia, but in any case, birds do some substantial amount of damage to these jellyfish that often are found just at the surface of bays. A. aurita has been suggested to have high mortality during the ephyra stage, which potentially affects the population size of the later medusa stage. While the main cause remains unknown, it is believed that they are consumed by one of three potential predatory filter-feeding sessile organisms: mussels, ascidians, and barnacles.

Aurelia jellyfish naturally die after living and reproducing for several months. It is probably rare for these moon jellies to live more than about six months in the wild, although specimens cared for in public aquarium exhibits typically live several to many years. In the wild, the warm water at the end of summer combines with exhaustive daily reproduction and lower natural levels of food for tissue repair, leaving these jellyfish more susceptible to bacterial and other disease problems that likely lead to the demise of most individuals. Such problems are responsible for the demise of many smaller species of jellyfish. [21] In 1997, Arai summarized that seasonal reproduction leaves the gonads open to infection and degradation. [10]

Some metazoan parasites attack Aurelia aurita, as well as most other species of jellyfish. [10]

Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria, is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Jellyfish</span> Soft-bodied, aquatic invertebrates

Jellyfish, also known as sea jellies, are the medusa-phase of certain gelatinous members of the subphylum Medusozoa, which is a major part of the phylum Cnidaria.

<span class="mw-page-title-main">Scyphozoa</span> Class of marine cnidarians, true jellyfish

The Scyphozoa are an exclusively marine class of the phylum Cnidaria, referred to as the true jellyfish.

<span class="mw-page-title-main">Medusozoa</span> Clade of marine invertebrates

Medusozoa is a clade in the phylum Cnidaria, and is often considered a subphylum. It includes the classes Hydrozoa, Scyphozoa, Staurozoa and Cubozoa, and possibly the parasitic Polypodiozoa. Medusozoans are distinguished by having a medusa stage in their often complex life cycle, a medusa typically being an umbrella-shaped body with stinging tentacles around the edge. With the exception of some Hydrozoa, all are called jellyfish in their free-swimming medusa phase.

<span class="mw-page-title-main">Jellyfish Lake</span> Marine lake in Palau

Jellyfish Lake is a marine lake located on Eil Malk island in Palau. Eil Malk is part of the Rock Islands, a group of small, rocky, mostly uninhabited islands in Palau's Southern Lagoon, between Koror and Peleliu. There are about 70 other marine lakes located throughout the Rock Islands. Millions of golden jellyfish migrate horizontally across the lake daily.

<i>Pelagia noctiluca</i> Species of cnidarian

Pelagia noctiluca is a jellyfish in the family Pelagiidae and the only currently recognized species in the genus Pelagia. It is typically known in English as the mauve stinger, but other common names are purple-striped jelly, purple stinger, purple people eater, purple jellyfish, luminous jellyfish and night-light jellyfish. In Greek, pelagia means "(she) of the sea", from pelagos "sea, open sea"; in Latin noctiluca is the combining form of nox, "night"", and lux, "light"; thus, Pelagia noctiluca can be described as a marine organism with the ability to glow in the dark (bioluminescence). It is found worldwide in tropical and warm temperate seas, although it is suspected that records outside the North Atlantic region, which includes the Mediterranean and Gulf of Mexico, represent closely related but currently unrecognized species.

<i>Phacellophora camtschatica</i> Species of jellyfish

Phacellophora camtschatica, commonly known as the fried egg jellyfish or egg-yolk jellyfish, is a very large jellyfish in the family Phacellophoridae. This species can be easily identified by the yellow coloration in the center of its body which closely resembles an egg yolk, hence how it got its common name. Some individuals can have a bell close to 60 cm (2 ft) in diameter, and most individuals have 16 clusters of up to a few dozen tentacles, each up to 6 m (20 ft) long. A smaller jellyfish, Cotylorhiza tuberculata, typically found in warmer water, particularly in the Mediterranean Sea, is also popularly called a fried egg jellyfish. Also, P. camtschatica is sometimes confused with the Lion's mane jellyfish.

<i>Turritopsis dohrnii</i> Species of small, biologically immortal jellyfish

Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia.

<span class="mw-page-title-main">Atolla jellyfish</span> Species of jellyfish

Atolla wyvillei, also known as the Atolla jellyfish or Coronate medusa, is a species of deep-sea crown jellyfish. It lives in oceans around the world. Like many species of mid-water animals, it is deep red in color. This species was named in honor of Sir Charles Wyville Thomson, chief scientist on the Challenger expedition.

<i>Chrysaora hysoscella</i> Species of jellyfish

Chrysaora hysoscella, the compass jellyfish, is a common species of jellyfish that inhabits coastal waters in temperate regions of the northeastern Atlantic Ocean, including the North Sea and Mediterranean Sea. In the past it was also recorded in the southeastern Atlantic, including South Africa, but this was caused by confusion with close relatives; C. africana, C. fulgida and an undescribed species tentatively referred to as "C. agulhensis".

<i>Aurelia</i> (cnidarian) Genus of jellyfish

Aurelia is a genus of jellyfish that are commonly called moon jellies, which are in the class Scyphozoa. There are currently 25 accepted species and many that are still not formally described.

<span class="mw-page-title-main">Blue jellyfish</span> Species of jellyfish

Cyanea lamarckii, also known as the blue jellyfish or bluefire jellyfish, is a species of jellyfish in the family Cyaneidae.

<i>Cyanea</i> (jellyfish) Genus of jellyfishes

Cyanea is a genus of jellyfish, primarily found in northern waters of the Atlantic and Pacific Oceans and southern Pacific waters of Australia and New Zealand, there are also several boreal, polar, tropical and sub-tropical species. Commonly found in and associated with rivers and fjords. The same genus name has been given to a genus of plants of the Hawaiian lobelioids, an example of a parahomonym.

<i>Aurelia labiata</i> Species of jellyfish

Aurelia labiata is a species of moon jellyfish. It is a cnidarian in the family Ulmaridae. It is typically larger than Aurelia aurita, with individuals document up to 45 cm (18 in). However, much of its size range overlaps with A. aurita, making size an imperfect diagnostic tool. Most Aurelia labiata have a 16-scalloped bell, meaning the bell indents inward at 16 points, a characteristic that also appears in other Aurelia species. Aurelia labiata occurs in the northeastern Pacific Ocean, from the northern coast of California, north to Canada and into Alaska.

<span class="mw-page-title-main">Helmet jellyfish</span> Species of jellyfish

The helmet jellyfish, sometimes called the merchant-cap, is a luminescent, red-colored jellyfish of the deep sea, belonging to the order Coronatae of the phylum Cnidaria. It is the only species in the monotypic genus Periphylla and is one of the rare examples in Scyphozoa which life-cycle lacks a polyp stage. This species is photophobic and inhabits deeper parts of the oceans to avoid light. It may be found at the surface on dark nights.

<i>Chrysaora plocamia</i> Species of jellyfish

The South American sea nettle is a species of jellyfish from the family Pelagiidae. It is found from the Pacific coast of Peru, south along Chile's coast to Tierra del Fuego, and north along the Atlantic coast of Argentina, with a few records from Uruguay. Despite its common name, it is not the only sea nettle in South America. For example, C. lactea is another type of sea nettle in this region. Historically, C. plocamia was often confused with C. hysoscella, a species now known to be restricted to the northeast Atlantic. C. plocamia is a large jellyfish, up to 1 m in bell diameter, although most mature individuals only are 25–40 cm (10–16 in).

<i>Aurelia coerulea</i> Species of jellyfish

Aurelia coerulea or Asian moon jelly is a species of moon jelly in the genus Aurelia. This species is native to the seas off Japan, China, Korea, and California, as well as the Mediterranean and other temperate seas. and they can also be found in coastal areas of China, Korea, California, the Mediterranean and other temperate seas. It is particularly abundant in artificial habitats and sheltered regions. It has a very high reproductive rate which can cause blooming events. A.coerulea blooming causes problems such as impairing fisheries, clogging the nuclear power plants and disrupting the local zooplankton abundance. The chemical compounds the species secretes as a self-defense mechanism can be used for pharmaceutical purposes.

<i>Cyanea fulva</i> Species of jellyfish

Cyanea fulva, the Atlantic lion's mane jellyfish, is a species of jellyfish found along the Mid-Atlantic coastal region of the United States. C. fulva are commonly noted as being about two inches in diameter and smaller than C. capillata, however, larger than C. versicolor, a co-occurring close species. One distinctive feature present in mature C. fulva populations is their four mouth-part tentacles, containing a cinnamon color with the center of the main cavity being darker. At a young age, these jellyfish can have three appendages but often gain a fourth at more developed life cycle stages. C. fulva are also known for having less folds compared to C. arctica but more folds compared to C. versicolor. These folds are described as being remarkably thin and deciduous.

<i>Aurelia limbata</i> Species of jellyfish

Aurelia limbata, the brown-banded moon jelly, is a type of moon jelly that occurs in various places throughout the Pacific Ocean.

<i>Aurelia marginalis</i> Species of jellyfish

Aurelia marginalis is a species of the genus Aurelia. All species in the genus are very similar, and it is difficult to identify Aurelia medusae without genetic sampling.

References

  1. 1 2 "Aurelia aurita (Linnaeus, 1758)". WoRMS. World Register of Marine Species. 2023. Retrieved 29 August 2023.
  2. Dawson, Michael N. "Aurelia species". Archived from the original on 2018-03-25. Retrieved 2008-08-12.
  3. 1 2 Lawley, Jonathan W.; Gamero-Mora, Edgar; Maronna, Maximiliano M.; Chiaverano, Luciano M.; Stampar, Sérgio N.; Hopcroft, Russell R.; Collins, Allen G.; Morandini, André C. (2021-09-09). "The importance of molecular characters when morphological variability hinders diagnosability: systematics of the moon jellyfish genus Aurelia (Cnidaria: Scyphozoa)". PeerJ. 9: e11954. doi: 10.7717/peerj.11954 . PMC   8435205 . PMID   34589293.
  4. Dawson, M. N.; Sen Gupta, A.; England, M. H. (2005). "Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species". Proc. Natl. Acad. Sci. USA . 102 (34): 11968–73. Bibcode:2005PNAS..10211968D. doi: 10.1073/pnas.0503811102 . PMC   1189321 . PMID   16103373.
  5. Dawson, M. N. (2003). "Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa)". Marine Biology . 143 (2): 369–79. doi:10.1007/s00227-003-1070-3. S2CID   189820003.
  6. 1 2 3 4 5 6 Russell, F. S. (1953). The Medusae of the British Isles II. London: Cambridge University Press. pp. 81–186. Archived from the original on 2016-06-23. Retrieved 2012-07-03.
  7. 1 2 Rodriguez, R. J. (February 1996). "Aurelia aurita (Saucer Jelly, Moon Jelly, Common Sea Jelly Jellyfish) Narrative".
  8. 1 2 Shoji, J.; Yamashita, R.; Tanaka, M. (2005). "Effect of low dissolved oxygen concentrations on behavior and predation rates on fish larvae by moon jellyfish Aurelia aurita and by a juvenile piscivore, Spanish mackerel Scomberomorus niphonius". Marine Biology. 147 (4): 863–68. doi:10.1007/s00227-005-1579-8. S2CID   83862921.
  9. Uye, S.; Fujii, N.; Takeoka, H. (2003). "Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan" (PDF). Plankton Biology and Ecology. 50 (1): 17–21.
  10. 1 2 3 4 5 6 7 Arai, M. N. (1997). A Functional Biology of Scyphozoa. London: Chapman and Hall. pp. 68–206. ISBN   978-0-412-45110-2.
  11. Rees, W. J. (1966). The Cnidaria and Their Evolution . London: Academic Press. pp.  77–104.
  12. Solomon, E. P.; Berg, L. R.; Martin, W. W. (2002). Biology (6th ed.). London: Brooks/Cole. pp. 602–608. ISBN   978-0-534-39175-1.
  13. Tree of Life – NJ Jellyfish – Aurelia aurita
  14. Gilbertson, L. (1999). Zoology Laboratory Manual (4th ed.). McGraw-Hill. pp. 9.2–9.7. ISBN   978-0-07-229641-9.
  15. He, J; Zheng, L; Zhang, W; Lin, Y (2015). "Life cycle reversal in Aurelia sp.1 (Cnidaria, Scyphozoa)". PLoS ONE . 10 (12): e0145314. Bibcode:2015PLoSO..1045314H. doi: 10.1371/journal.pone.0145314 . PMC   4687044 . PMID   26690755.
  16. Sucharitakul, Phuping (2020). "Limited ingestion, rapid egestion and no detectable impacts of microbeads on the moon jellyfish, Aurelia aurita". Marine Pollution Bulletin. 156: 111208. Bibcode:2020MarPB.15611208S. doi:10.1016/j.marpolbul.2020.111208. PMID   32366368. S2CID   218504266.
  17. "Jellyfish contain no calories, so why do they still attract predators?". ScienceDaily. Retrieved 2020-06-29.
  18. Strand, S. W.; Hamner, W. M. (1988). "Predatory behavior of Phacellophora camtschatica and size-selective predation upon Aurelia aurita (Scyphozoa: Cnidaria) in Saanich Inlet, British Columbia". Marine Biology . 99 (3): 409–414. doi:10.1007/BF02112134. S2CID   84652019.
  19. Towanda, T.; Thuesen, E. V. (2006). "Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum". Marine Ecology Progress Series. 315: 221–236. Bibcode:2006MEPS..315..221T. doi: 10.3354/meps315221 .
  20. Bos A.R., Cruz-Rivera E. and Sanad A.M. (2016). "Herbivorous fishes Siganus rivulatus (Siganidae) and Zebrasoma desjardinii (Acanthuridae) feed on Ctenophora and Scyphozoa in the Red Sea". Marine Biodiversity. 47: 243–246. doi:10.1007/s12526-016-0454-9. S2CID   24694789.
  21. Mills, C. E. (1993). "Natural mortality in NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence". Bulletin of Marine Science. 53 (Proceedings of the Zooplankton Ecology Symposium): 194–203.

Further reading