Axiomatic quantum field theory

Last updated

Axiomatic quantum field theory is a mathematical discipline which aims to describe quantum field theory in terms of rigorous axioms. It is strongly associated with functional analysis and operator algebras, but has also been studied in recent years from a more geometric and functorial perspective.

Contents

There are two main challenges in this discipline. First, one must propose a set of axioms which describe the general properties of any mathematical object that deserves to be called a "quantum field theory". Then, one gives rigorous mathematical constructions of examples satisfying these axioms.

Analytic approaches

Wightman axioms

The first set of axioms for quantum field theories, known as the Wightman axioms, were proposed by Arthur Wightman in the early 1950s. These axioms attempt to describe QFTs on flat Minkowski spacetime by regarding quantum fields as operator-valued distributions acting on a Hilbert space. In practice, one often uses the Wightman reconstruction theorem, which guarantees that the operator-valued distributions and the Hilbert space can be recovered from the collection of correlation functions.

Osterwalder–Schrader axioms

The correlation functions of a QFT satisfying the Wightman axioms often can be analytically continued from Lorentz signature to Euclidean signature. (Crudely, one replaces the time variable with imaginary time the factors of change the sign of the time-time components of the metric tensor.) The resulting functions are called Schwinger functions. For the Schwinger functions there is a list of conditions — analyticity, permutation symmetry, Euclidean covariance, and reflection positivity — which a set of functions defined on various powers of Euclidean space-time must satisfy in order to be the analytic continuation of the set of correlation functions of a QFT satisfying the Wightman axioms.

Haag–Kastler axioms

The Haag–Kastler axioms axiomatize QFT in terms of nets of algebras.

Euclidean CFT axioms

These axioms (see e.g. [1] ) are used in the conformal bootstrap approach to conformal field theory in . They are also referred to as Euclidean bootstrap axioms.


See also

Related Research Articles

<span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

Arthur Strong Wightman was an American mathematical physicist. He was one of the founders of the axiomatic approach to quantum field theory, and originated the set of Wightman axioms. With his rigorous treatment of quantum field theories, he promoted research on various aspects of modern mathematical physics.

<span class="mw-page-title-main">Wightman axioms</span> Axiomatization of quantum field theory

In mathematical physics, the Wightman axioms, named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the early 1950s, but they were first published only in 1964 after Haag–Ruelle scattering theory affirmed their significance.

Algebraic quantum field theory (AQFT) is an application to local quantum physics of C*-algebra theory. Also referred to as the Haag–Kastler axiomatic framework for quantum field theory, because it was introduced by Rudolf Haag and Daniel Kastler (1964). The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

<span class="mw-page-title-main">Operator algebra</span> Branch of functional analysis

In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.

The Reeh–Schlieder theorem is a result in relativistic local quantum field theory published by Helmut Reeh and Siegfried Schlieder (1918-2003) in 1961.

While working on the mathematical physics of an interacting, relativistic, quantum field theory, Rudolf Haag developed an argument against the existence of the interaction picture, a result now commonly known as Haag’s theorem. Haag’s original proof relied on the specific form of then-common field theories, but subsequently generalized by a number of authors, notably Hall & Wightman, who concluded that no single, universal Hilbert space representation can describe both free and interacting fields. A generalization due to Reed & Simon shows that applies to free neutral scalar fields of different masses, which implies that the interaction picture is always inconsistent, even in the case of a free field.

In physics, the cluster decomposition property states that experiments carried out far from each other cannot influence each other. Usually applied to quantum field theory, it requires that vacuum expectation values of operators localized in bounded regions factorize whenever these regions becomes sufficiently distant from each other. First formulated by Eyvind H. Wichmann and James H. Crichton in 1963 in the context of the S-matrix, it was conjectured by Steven Weinberg that in the low energy limit the cluster decomposition property, together with Lorentz invariance and quantum mechanics, inevitably lead to quantum field theory. String theory satisfies all three of the conditions and so provides a counter-example against this being true at all energy scales.

In quantum field theory, the Wightman distributions can be analytically continued to analytic functions in Euclidean space with the domain restricted to the ordered set of points in Euclidean space with no coinciding points. These functions are called the Schwinger functions and they are real-analytic, symmetric under the permutation of arguments, Euclidean covariant and satisfy a property known as reflection positivity. Properties of Schwinger functions are known as Osterwalder–Schrader axioms. Schwinger functions are also referred to as Euclidean correlation functions.

In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question.

The Yang–Mills existence and mass gap problem is an unsolved problem in mathematical physics and mathematics, and one of the seven Millennium Prize Problems defined by the Clay Mathematics Institute, which has offered a prize of US$1,000,000 for its solution.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space.

In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

In mathematical physics, the Dirac–von Neumann axioms give a mathematical formulation of quantum mechanics in terms of operators on a Hilbert space. They were introduced by Paul Dirac in 1930 and John von Neumann in 1932.

Robert Schrader was a German theoretical and mathematical physicist. He is known for the Osterwalder-Schrader axioms.

References

  1. Kravchuk, Petr; Qiao, Jiaxin; Rychkov, Slava (2021-04-05). "Distributions in CFT II. Minkowski Space". arXiv: 2104.02090v1 [hep-th].