Balance (ability)

Last updated
A woman demonstrating the ability to balance Model Balancing.jpg
A woman demonstrating the ability to balance
A waiter balancing wine glasses Wine glass tower.jpg
A waiter balancing wine glasses

Balance in biomechanics, is an ability to maintain the line of gravity (vertical line from centre of mass) of a body within the base of support with minimal postural sway. [1] Sway is the horizontal movement of the centre of gravity even when a person is standing still. A certain amount of sway is essential and inevitable due to small perturbations within the body (e.g., breathing, shifting body weight from one foot to the other or from forefoot to rearfoot) or from external triggers (e.g., visual distortions, floor translations). An increase in sway is not necessarily an indicator of dysfunctional balance so much as it is an indicator of decreased sensorimotor control. [2]

Contents

Maintaining balance

Maintaining balance requires coordination of input from multiple sensory systems including the vestibular, somatosensory, and visual systems. [3]

The senses must detect changes of spatial orientation with respect to the base of support, regardless of whether the body moves or the base is altered. There are environmental factors that can affect balance such as light conditions, floor surface changes, alcohol, drugs, and ear infection.

Balance impairments

There are balance impairments associated with aging. Age-related decline in the ability of the above systems to receive and integrate sensory information contributes to poor balance in older adults. [4] As a result, the elderly are at an increased risk of falls. In fact, one in three adults aged 65 and over will fall each year. [5]

In the case of an individual standing quietly upright, the limit of stability is defined as the amount of postural sway at which balance is lost and corrective action is required. [6]

Body sway can occur in all planes of motion, which make it an increasingly difficult ability to rehabilitate. There is strong evidence in research showing that deficits in postural balance is related to the control of medial-lateral stability and an increased risk of falling. To remain balanced, a person standing must be able to keep the vertical projection of their center of mass within their base of support, resulting in little medial-lateral or anterior-posterior sway. Ankle sprains are one of the most frequently occurring injuries among athletes and physically active people. The most common residual disability post ankle sprain is instability along with body sway. Mechanical instability includes insufficient stabilizing structures and mobility that exceed physiological limits. Functional instability involves recurrent sprains or a feeling of giving way of the ankle. [7] Nearly 40% of patients with ankle sprains suffer from instability and an increase in body sway. [8] Injury to the ankle causes a proprioceptive deficit and impaired postural control. Individuals with muscular weakness, occult instability, and decreased postural control are more susceptible to ankle injury than those with better postural control.

Balance can be severely affected in individuals with neurological conditions. People who suffer a stroke or spinal cord injury for example, can struggle with this ability. Impaired balance is strongly associated with future function and recovery after a stroke, and is the strongest predictor of falls. [9]

Another population where balance is severely affected is Parkinson's disease patients. A study done by Nardone and Schieppati (2006) showed that individuals with Parkinson's disease problems in balance have been related to a reduced limit of stability and an impaired production of anticipatory motor strategies and abnormal calibration.

Balance can also be negatively affected in a normal population through fatigue in the musculature surrounding the ankles, knees, and hips. Studies have found, however, that muscle fatigue around the hips (gluteals and lumbar extensors) and knees have a greater effect on postural stability (sway). [2] It is thought that muscle fatigue leads to a decreased ability to contract with the correct amount of force or accuracy. As a result, proprioception and kinesthetic feedback from joints are altered so that conscious joint awareness may be negatively effected. [3]

Balance training

Balance Training Plank on a pair of medicine balls.jpg
Balance Training

Since balance is a key predictor of recovery and is required in many activities of daily living, it is often introduced into treatment plans by physiotherapists and occupational therapists when dealing with geriatrics, patients with neurological conditions, or others for whom balance training has been determined to be beneficial.

Balance training in stroke patients has been supported in the literature. [9] [10] Methods commonly used and proven to be effective for this population include sitting or standing balance practice with various progressions including reaching, variations in base of support, use of tilt boards, gait training varying speed, and stair climbing exercises. [9] Another method to improve balance is perturbation training, which is an external force applied to a person's center of mass in an attempt to move it from the base of support. [11] The type of training should be determined by a physiotherapist and will depend on the nature and severity of the stroke, stage of recovery, and the patient's abilities and impairments after the stroke.

Populations such as the elderly, children with neuromuscular diseases, and those with motor deficits such as chronic ankle instability have all been studied and balance training has been shown to result in improvements in postural sway and improved "one-legged stance balance" in these groups. [12] The effects of balance training can be measured by more varied means, but typical quantitative outcomes are centre of pressure (CoP), postural sway, and static/dynamic balance, which are measured by the subject's ability to maintain a set body position while undergoing some type of instability. [12] [13]

Studies have suggested, higher level of physical activity have shown to reduce the morbidity and mortality along with risk of fall up to 30% to 50%. [14] Some types of exercise (gait, balance, co-ordination and functional tasks; strengthening exercise; 3D exercise and multiple exercise types) improve clinical balance outcomes in older people, and are seemingly safe. [15] A study has shown to be effective in improving ability to balance after undergoing aerobic exercises along with resistance exercises. [16] There is still insufficient evidence supporting general physical activity, computerized balance programs or vibration plates. [15]

Functional balance assessments

Functional tests of balance focus on maintenance of both static and dynamic balance, whether it involves a type of perturbation/change of center of mass or during quiet stance. [17] Standardized tests of balance are available to allow allied health care professionals to assess an individual's postural control. Some functional balance tests that are available are:

[23] [24]

Concussion (or mild traumatic brain injury) have been associated with imbalance among sports participants and military personnel. Some of the standard balance tests may be too easy or time-consuming for application to these high-functioning groups, s. Expert recommendations have been gathered concerning balance assessments appropriate to military service-members. [25]

Quantitative (computerized) assessments

Due to recent technological advances, a growing trend in balance assessments has become the monitoring of center of pressure (terrestrial locomotion) (CoP), the reaction vector of center of mass on the ground, path length for a specified duration. [26] With quantitative assessments, minimal CoP path length is suggestive of good balance. Laboratory-grade force plates are considered the "gold-standard" of measuring CoP. The NeuroCom Balance Manager (NeuroCom, Clackamas, OR, United States) is a commercially available dynamic posturography system that uses computerized software to track CoP during different tasks. These different assessments range from the sensory organization test looking at the different systems that contribute through sensory receptor input to the limits of stability test observing a participant's ankle range of motion, velocity, and reaction time. While the NeuroCom is considered the industry standard for balance assessments, it does come at a steep price (about $250,000).

Within the past 5 years research has headed toward inexpensive and portable devices capable of measuring CoP accurately. Recently, Nintendo's Wii balance board (Nintendo, Kyoto, Japan) has been validated against a force plate and found to be an accurate tool to measure CoP [27] This is very exciting as the price difference in technology ($25 vs $10,000) makes the Wii balance board a suitable alternative for clinicians to use quantitative balance assessments. Other inexpensive, custom-built force plates are being integrated into this new dynamic to create a growing field of research and clinical assessment that will benefit many populations.

Fatigue's effect on balance A Bowing in Art 1996.jpg
Fatigue's effect on balance

Fatigue's effect on balance

The complexity of balance allows for many confounding variables to affect a person's ability to stay upright. Fatigue, causing central nervous system (CNS) dysfunction, can indirectly result in the inability to remain upright. This is seen repeatedly in clinical populations (e.g. Parkinson's disease, multiple sclerosis). Another major concern regarding fatigue's effect on balance is in the athletic population. Balance testing has become a standard measure to help diagnose concussions in athletes, but due to the fact that athletes can be extremely fatigued has made it hard for clinicians to accurately determine how long the athletes need to rest before fatigue is gone, and they can measure balance to determine if the athlete is concussed. So far, researchers have only been able to estimate that athletes need anywhere from 8–20 minutes of rest before testing balance [28] [29] [30] That can be a huge difference depending on the circumstances.

Other factors influencing balance

Age, gender,[ how? ] and height have all been shown to impact an individual's ability to balance and the assessment[ by whom? ] of that balance.[ citation needed ] Typically, older adults have more body sway with all testing conditions. [31] Tests have shown that older adults demonstrate shorter functional reach and larger body sway path lengths. Height also influences body sway in that as height increases, functional reach typically decreases. However, this test is only a measure of anterior and posterior sway. This is done to create a repeatable and reliable clinical balance assessment tool. [32] A 2011 Cochrane Review found that specific types of exercise (such as gait, balance, co-ordination and functional tasks; strengthening exercises; 3D exercises [e.g. Tai Chi] and combinations of these) can help improve balance in older adults. However, there was no or limited evidence on the effectiveness of general physical activities, such as walking and cycling, computer-based balance games and vibration plates. [15]

Voluntary control of balance

While balance is mostly an automatic process, voluntary control is common. Active control usually takes place when a person is in a situation where balance is compromised. This can have the counter-intuitive effect of increasing postural sway during basic activities such as standing. One explanation for this effect is that conscious control results in over-correcting an instability and "may inadvertently disrupt relatively automatic control processes."[ citation needed ] While concentration on an external task "promotes the utilization of more automatic control processes." [33]

Balance and dual-tasking

Supra-postural tasks are those activities that rely on postural control while completing another behavioral goal, such as walking or creating a text message while standing upright. Research has demonstrated that postural stability operates to permit the achievement of other activities. [34] In other words, standing in a stable upright position is not at all beneficial if one falls as soon as any task is attempted. In a healthy individual, it is believed that postural control acts to minimize the amount of effort required (not necessarily to minimize sway), while successfully accomplishing the supra-postural task. [34] Research has shown that spontaneous reductions in postural sway occur in response to the addition of a secondary goal. [33]

McNevin and Wulf (2002) found an increase in postural performance when directing an individual's attention externally compared to directing attention internally [35] That is, focusing attention on the effects of one's movements rather than on the movement itself will boost performance. This results from the use of more automatic and reflexive control processes. [35] [36] When one is focused on their movements (internal focus), they may inadvertently interfere with these automatic processes, decreasing their performance. Externally focusing attention improves postural stability, despite increasing postural sway at times. [35] It is believed that utilizing automatic control processes by focusing attention externally enhances both performance and learning. [35] Adopting an external focus of attention subsequently improves the performance of supra-postural tasks, while increasing postural stability. [36]

Related Research Articles

Hemiparesis, or unilateral paresis, is weakness of one entire side of the body. Hemiplegia is, in its most severe form, complete paralysis of half of the body. Hemiparesis and hemiplegia can be caused by different medical conditions, including congenital causes, trauma, tumors, or stroke.

Spasticity is a feature of altered skeletal muscle performance with a combination of paralysis, increased tendon reflex activity, and hypertonia. It is also colloquially referred to as an unusual "tightness", stiffness, or "pull" of muscles.

A balance disorder is a disturbance that causes an individual to feel unsteady, for example when standing or walking. It may be accompanied by feelings of giddiness, or wooziness, or having a sensation of movement, spinning, or floating. Balance is the result of several body systems working together: the visual system (eyes), vestibular system (ears) and proprioception. Degeneration or loss of function in any of these systems can lead to balance deficits.

<span class="mw-page-title-main">Instability</span> Characterized by some of the outputs or internal states growing without bounds

In dynamical systems instability means that some of the outputs or internal states increase with time, without bounds. Not all systems that are not stable are unstable; systems can also be marginally stable or exhibit limit cycle behavior.

Posturography is the technique used to quantify postural control in upright stance in either static or dynamic conditions. Among them, Computerized dynamic posturography (CDP), also called test of balance (TOB), is a non-invasive specialized clinical assessment technique used to quantify the central nervous system adaptive mechanisms (sensory, motor and central) involved in the control of posture and balance, both in normal (such as in physical education and sports training) and abnormal conditions (particularly in the diagnosis of balance disorders and in physical therapy and postural re-education). Due to the complex interactions among sensory, motor, and central processes involved in posture and balance, CDP requires different protocols in order to differentiate among the many defects and impairments which may affect the patient's posture control system. Thus, CDP challenges it by using several combinations of visual and support surface stimuli and parameters.

Astasis is a lack of motor coordination marked by an inability to stand, walk or even sit without assistance due to disruption of muscle coordination.

<span class="mw-page-title-main">Fall prevention</span> Interventions to prevent injury in domestic settings

Fall prevention includes any action taken to help reduce the number of accidental falls suffered by susceptible individuals, such as the elderly (idiopathic) and people with neurological or orthopedic indications.

<span class="mw-page-title-main">Sprained ankle</span> Medical condition

A sprained ankle is an injury where sprain occurs on one or more ligaments of the ankle. It is the most commonly occurring injury in sports, mainly in ball sports such as basketball, volleyball, football, and tennis.

Active sitting is the practice of enabling or encouraging individuals to engage in physical activity while seated. It is also commonly known as dynamic sitting. The underlying notion highlights the advantages of incorporating flexibility and movement while sitting, as it can positively impact the human body and allow the completion of certain tasks that require sitting. "Active sitting, consisting of modified chairs or stability balls, allows the body to stay dynamic while seated." One of the earliest forms of active sitting is the common rocking chair which allows forward and backward swaying motion.

<span class="mw-page-title-main">Standing</span> Human position in which the body is held upright

Standing, also referred to as orthostasis, is a position in which the body is held in an erect ("orthostatic") position and supported only by the feet. Although seemingly static, the body rocks slightly back and forth from the ankle in the sagittal plane. The sagittal plane bisects the body into right and left sides. The sway of quiet standing is often likened to the motion of an inverted pendulum.

<span class="mw-page-title-main">Orthotics</span> Medical specialty that focuses on the building and designing of artificial legs

Orthotics is a medical specialty that focuses on the design and application of orthoses, sometimes known as braces or calipers. An orthosis is "an externally applied device used to influence the structural and functional characteristics of the neuromuscular and skeletal systems." Orthotists are professionals who specialize in designing these braces.

<span class="mw-page-title-main">Locomotor effects of shoes</span>

Locomotor effects of shoes are the way in which the physical characteristics or components of shoes influence the locomotion neuromechanics of a person. Depending on the characteristics of the shoes, the effects are various, ranging from alteration in balance and posture, muscle activity of different muscles as measured by electromyography (EMG), and the impact force. There are many different types of shoes that exist, such as running, walking, loafers, high heels, sandals, slippers, work boots, dress shoes, and many more. However, a typical shoe will be composed of an insole, midsole, outsole, and heels, if any. In an unshod condition, where one is without any shoes, the locomotor effects are primarily observed in the heel strike patterns and resulting impact forces generated on the ground.

<span class="mw-page-title-main">Parkinsonian gait</span> Type of gait due to Parkinsons disease

Parkinsonian gait is the type of gait exhibited by patients with Parkinson's disease (PD). It is often described by people with Parkinson's as feeling like being stuck in place, when initiating a step or turning, and can increase the risk of falling. This disorder is caused by a deficiency of dopamine in the basal ganglia circuit leading to motor deficits. Gait is one of the most affected motor characteristics of this disorder although symptoms of Parkinson's disease are varied.

Normal aging movement control in humans is about the changes in the muscles, motor neurons, nerves, sensory functions, gait, fatigue, visual and manual responses, in men and women as they get older but who do not have neurological, muscular or neuromuscular disorder. With aging, neuromuscular movements are impaired, though with training or practice, some aspects may be prevented.

The Berg Balance Scale is a widely used clinical test of a person's static and dynamic balance abilities, named after Katherine Berg, one of the developers. For functional balance tests, the BBS is generally considered to be the gold standard.

In biomechanics, center of pressure (CoP) is the term given to the point of application of the ground reaction force vector. The ground reaction force vector represents the sum of all forces acting between a physical object and its supporting surface. Analysis of the center of pressure is common in studies on human postural control and gait. It is thought that changes in motor control may be reflected in changes in the center of pressure. In biomechanical studies, the effect of some experimental condition on movement execution will regularly be quantified by alterations in the center of pressure.

<span class="mw-page-title-main">Gait deviations</span> Medical condition

Gait deviations are nominally referred to as any variation of standard human gait, typically manifesting as a coping mechanism in response to an anatomical impairment. Lower-limb amputees are unable to maintain the characteristic walking patterns of an able-bodied individual due to the removal of some portion of the impaired leg. Without the anatomical structure and neuromechanical control of the removed leg segment, amputees must use alternative compensatory strategies to walk efficiently. Prosthetic limbs provide support to the user and more advanced models attempt to mimic the function of the missing anatomy, including biomechanically controlled ankle and knee joints. However, amputees still display quantifiable differences in many measures of ambulation when compared to able-bodied individuals. Several common observations are whole-body movements, slower and wider steps, shorter strides, and increased sway.

The Parallel Walk Test is a quick and simple quantitative measuring tool for balance during walking and could be a useful tool in clinical settings for assessing balance before and after treatments and to discriminate high fall risk potential.

Limits of Stability (LoS) are a concept in balance and stability, defined as the points at which the center of gravity (CoG) approaches the limits of the base of support (BoS) and requires a corrective strategy to bring the center of mass (CoM) back within the BoS. In simpler terms, LoS represents the maximum distance an individual can intentionally sway in any direction without losing balance or needing to take a step. The typical range of stable swaying is approximately 12.5° in the front-back (antero-posterior) direction and 16° in the side-to-side (medio-lateral) direction. This stable swaying area is often referred to as the 'Cone of Stability', which varies depending on the specific task being performed.

<span class="mw-page-title-main">Vestibular rehabilitation</span> Form of physical therapy for vestibular disorders

Vestibular rehabilitation (VR), also known as vestibular rehabilitation therapy (VRT), is a specialized form of physical therapy used to treat vestibular disorders or symptoms, characterized by dizziness, vertigo, and trouble with balance, posture, and vision. These primary symptoms can result in secondary symptoms such as nausea, fatigue, and lack of concentration. All symptoms of vestibular dysfunction can significantly decrease quality of life, introducing mental-emotional issues such as anxiety and depression, and greatly impair an individual, causing them to become more sedentary. Decreased mobility results in weaker muscles, less flexible joints, and worsened stamina, as well as decreased social and occupational activity. Vestibular rehabilitation therapy can be used in conjunction with cognitive behavioral therapy in order to reduce anxiety and depression resulting from an individual's change in lifestyle. However, there is often confusion about whether vestibular rehabilitation falls under physical therapy (PT) or occupational therapy (OT).

References

  1. Shumway-Cook A, Anson D, Haller S (June 1988). "Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic patients". Archives of Physical Medicine and Rehabilitation. 69 (6): 395–400. PMID   3377664.
  2. 1 2 Davidson BS, Madigan ML, Nussbaum MA (October 2004). "Effects of lumbar extensor fatigue and fatigue rate on postural sway". European Journal of Applied Physiology. 93 (1–2): 183–189. doi:10.1007/s00421-004-1195-1. PMID   15549370. S2CID   10343160.
  3. 1 2 Gribble PA, Hertel J (April 2004). "Effect of lower-extremity muscle fatigue on postural control". Archives of Physical Medicine and Rehabilitation. 85 (4): 589–592. doi:10.1016/j.apmr.2003.06.031. PMID   15083434.
  4. Schmitz TJ (2007). "Examination of Sensory Function". In O'Sullivan SB, Schmitz TJ (eds.). Physical Rehabilitation (5th ed.). Philadelphia, PA: F. A. Davis Company. pp. 121–157.
  5. National Center for Injury Prevention and Control (8 December 2010). "Costs of Falls Among Older Adults". Centers for Disease Control and Prevention. Retrieved 15 May 2011.
  6. Nichols DS, Glenn TM, Hutchinson KJ (August 1995). "Changes in the mean center of balance during balance testing in young adults". Physical Therapy. 75 (8): 699–706. doi:10.1093/ptj/75.8.699. PMID   7644574. S2CID   2819911. PDF
  7. Refshauge KM, Kilbreath SL, Raymond J (January 2000). "The effect of recurrent ankle inversion sprain and taping on proprioception at the ankle". Medicine and Science in Sports and Exercise. 32 (1): 10–15. doi:10.1097/00005768-200001000-00003. PMID   10647523.
  8. Guskiewicz KM, Perrin DH (May 1996). "Effect of orthotics on postural sway following inversion ankle sprain". The Journal of Orthopaedic and Sports Physical Therapy. 23 (5): 326–331. doi: 10.2519/jospt.1996.23.5.326 . PMID   8728531.
  9. 1 2 3 Lubetzky-Vilnai A, Kartin D (September 2010). "The effect of balance training on balance performance in individuals poststroke: a systematic review". Journal of Neurologic Physical Therapy. 34 (3): 127–137. doi: 10.1097/NPT.0B013E3181EF764D . PMID   20716987. S2CID   13500994.
  10. Hammer A, Nilsagard Y, Wallquist M (2008). "Balance training in stroke patients a systematic review of randomized, controlled trials". Advances in Physiotherapy. 10 (4): 163–172. doi:10.1080/14038190701757656. S2CID   71362704.
  11. Medical Dictionary for the Health Professions and Nursing © Farlex 2012
  12. 1 2 Granacher U, Gollhofer A, Kriemler S (September 2010). "Effects of balance training on postural sway, leg extensor strength, and jumping height in adolescents". Research Quarterly for Exercise and Sport. 81 (3): 245–251. doi:10.5641/027013610X13088573595943. PMID   20949844.
  13. Zech A, Hübscher M, Vogt L, Banzer W, Hänsel F, Pfeifer K (2010). "Balance training for neuromuscular control and performance enhancement: a systematic review". Journal of Athletic Training. 45 (4): 392–403. doi:10.4085/1062-6050-45.4.392. PMC   2902034 . PMID   20617915.
  14. Thomas E, Battaglia G, Patti A, Brusa J, Leonardi V, Palma A, Bellafiore M (July 2019). "Physical activity programs for balance and fall prevention in elderly: A systematic review". Medicine. 98 (27): e16218. doi:10.1097/MD.0000000000016218. PMC   6635278 . PMID   31277132.
  15. 1 2 3 Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C (November 2011). "Exercise for improving balance in older people". The Cochrane Database of Systematic Reviews (11): CD004963. doi:10.1002/14651858.CD004963.pub3. PMID   22071817. S2CID   205176433.
  16. Thomas E, Battaglia G, Patti A, Brusa J, Leonardi V, Palma A, Bellafiore M (July 2019). "Physical activity programs for balance and fall prevention in elderly: A systematic review". Medicine. 98 (27): e16218. doi:10.1097/MD.0000000000016218. PMC   6635278 . PMID   31277132.
  17. 1 2 3 4 5 6 7 O'Sullivan S, Schmitz T (2007). Physical Rehabilitation (Fifth ed.). Philadelphia: F.A. Davis Company. pp. 254–259.
  18. Blum L, Korner-Bitensky N (May 2008). "Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review". Physical Therapy. 88 (5): 559–566. doi: 10.2522/ptj.20070205 . PMID   18292215.
  19. Alamer, Abayneh; Getie, Kefale; Melese, Haimanot; Mazea, Habtamu (2020-08-17). "Effectiveness of Body Awareness Therapy in Stroke Survivors: A Systematic Review of Randomized Controlled Trials". Open Access Journal of Clinical Trials. 12: 23–32. doi: 10.2147/OAJCT.S260476 . S2CID   225364826.
  20. Hrysomallis C (March 2011). "Balance ability and athletic performance". Sports Medicine. 41 (3): 221–232. doi:10.2165/11538560-000000000-00000. PMID   21395364. S2CID   24522106.
  21. Horak FB, Wrisley DM, Frank J (May 2009). "The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits". Physical Therapy. 89 (5): 484–498. doi:10.2522/ptj.20080071. PMC   2676433 . PMID   19329772.
  22. Di Carlo S, Bravini E, Vercelli S, Massazza G, Ferriero G (June 2016). "The Mini-BESTest: a review of psychometric properties". International Journal of Rehabilitation Research. 39 (2): 97–105. doi:10.1097/MRR.0000000000000153. PMID   26795715. S2CID   9649113.
  23. Bell DR, Guskiewicz KM, Clark MA, Padua DA (May 2011). "Systematic review of the balance error scoring system". Sports Health. 3 (3): 287–295. doi:10.1177/1941738111403122. PMC   3445164 . PMID   23016020.
  24. Valovich TC, Perrin DH, Gansneder BM (March 2003). "Repeat Administration Elicits a Practice Effect With the Balance Error Scoring System but Not With the Standardized Assessment of Concussion in High School Athletes". Journal of Athletic Training. 38 (1): 51–56. PMC   155511 . PMID   12937472.
  25. Lawson BD, Rupert AH, Legan SM (2012). Vestibular Balance Deficits Following Head Injury: Recommendations Concerning Evaluation and Rehabilitation in the Military Setting (PDF) (Report). Fort Rucker, Alabama: Army Aeromedical Research Lab. No. USAARL-2012-10. Archived (PDF) from the original on November 21, 2021.
  26. Hof AL, Gazendam MG, Sinke WE (January 2005). "The condition for dynamic stability". Journal of Biomechanics. 38 (1): 1–8. doi:10.1016/j.jbiomech.2004.03.025. PMID   15519333.
  27. Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M (March 2010). "Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance". Gait & Posture. 31 (3): 307–310. doi:10.1016/j.gaitpost.2009.11.012. PMID   20005112. S2CID   7785113.
  28. Fox ZG, Mihalik JP, Blackburn JT, Battaglini CL, Guskiewicz KM (2008). "Return of postural control to baseline after anaerobic and aerobic exercise protocols". Journal of Athletic Training. 43 (5): 456–463. doi:10.4085/1062-6050-43.5.456. PMC   2547864 . PMID   18833307.
  29. Nardone A, Tarantola J, Giordano A, Schieppati M (August 1997). "Fatigue effects on body balance". Electroencephalography and Clinical Neurophysiology. 105 (4): 309–320. doi:10.1016/S0924-980X(97)00040-4. PMID   9284239.
  30. Susco TM, Valovich McLeod TC, Gansneder BM, Shultz SJ (September 2004). "Balance Recovers Within 20 Minutes After Exertion as Measured by the Balance Error Scoring System". Journal of Athletic Training. 39 (3): 241–246. PMC   522146 . PMID   15496993.
  31. Hageman PA, Leibowitz JM, Blanke D (October 1995). "Age and gender effects on postural control measures". Archives of Physical Medicine and Rehabilitation. 76 (10): 961–965. doi:10.1016/S0003-9993(95)80075-1. PMID   7487439.
  32. Duncan PW, Weiner DK, Chandler J, Studenski S (November 1990). "Functional reach: a new clinical measure of balance". Journal of Gerontology. 45 (6): M192–M197. doi:10.1093/geronj/45.6.M192. PMID   2229941.
  33. 1 2 "McNevin, N., Wulf, G. (2002)"McNevin NH, Wulf G (July 2002). "Attentional focus on supra-postural tasks affects postural control". Human Movement Science. 21 (2): 187–202. doi:10.1016/s0167-9457(02)00095-7. PMID   12167298.
  34. 1 2 Stoffregen T, Pagulayan R, Bardy B, Hettinger L (2000). "Modulating postural control to facilitate visual performance". Human Movement Science. 19 (2): 203–20. CiteSeerX   10.1.1.467.5141 . doi:10.1016/s0167-9457(00)00009-9.
  35. 1 2 3 4 McNevin NH, Wulf G (July 2002). "Attentional focus on supra-postural tasks affects postural control". Human Movement Science. 21 (2): 187–202. doi:10.1016/s0167-9457(02)00095-7. PMID   12167298.
  36. 1 2 McNevin N, Weir P, Quinn T (March 2013). "Effects of attentional focus and age on suprapostural task performance and postural control". Research Quarterly for Exercise and Sport. 84 (1): 96–103. doi:10.1080/02701367.2013.762321. PMID   23611013. S2CID   29300584.

Further reading