Biodefense

Last updated

Biodefense refers to measures to counter biological threats, reduce biological risks, and prepare for, respond to, and recover from bioincidents, whether naturally occurring, accidental, or deliberate in origin and whether impacting human, animal, plant, or environmental health. [1] Biodefense measures often aim to improve biosecurity or biosafety. Biodefense is frequently discussed in the context of biological warfare or bioterrorism, and is generally considered a military or emergency response term.

Contents

Biodefense applies to two distinct target populations: civilian non-combatants and military combatants (troops in the field). Protection of water supplies and food supplies are often a critical part of biodefense.

Military

Troops in the field

Military biodefense in the United States began with the United States Army Medical Unit (USAMU) at Fort Detrick, Maryland, in 1956. (In contrast to the U.S. Army Biological Warfare Laboratories [1943–1969], also at Fort Detrick, the USAMU's mission was purely to develop defensive measures against bio-agents, as opposed to weapons development.) The USAMU was disestablished in 1969 and succeeded by today's United States Army Medical Research Institute of Infectious Diseases (USAMRIID).

The U.S. Department of Defense (DoD) has focused since at least 1998 on the development and application of vaccine-based biodefenses. In a July 2001 report commissioned by the DoD, the "DoD-critical products" were stated as vaccines against anthrax (AVA and Next Generation), smallpox, plague, tularemia, botulinum, ricin, and equine encephalitis. Note that two of these targets are toxins (botulinum and ricin) while the remainder are infectious agents.

Civilian

Role of public health and disease surveillance

It's extremely important to note that all of the classical and modern biological weapons organisms are animal diseases, the only exception being smallpox. Thus, in any use of biological weapons, it is highly likely that animals will become ill either simultaneously with, or perhaps earlier than humans.

Indeed, in the largest biological weapons accident known–the anthrax outbreak in Sverdlovsk (now Yekaterinburg) in the Soviet Union in 1979, sheep became ill with anthrax as far as 200 kilometers from the release point of the organism from a military facility in the southeastern portion of the city (known as Compound 19 and still off limits to visitors today, see Sverdlovsk anthrax leak).

Thus, a robust surveillance system involving human clinicians and veterinarians may identify a bioweapons attack early in the course of an epidemic, permitting the prophylaxis of disease in the vast majority of people (and/or animals) exposed but not yet ill.

For example, in the case of anthrax, it is likely that by 24–36 hours after an attack, some small percentage of individuals (those with compromised immune system or who had received a large dose of the organism due to proximity to the release point) will become ill with classical symptoms and signs (including a virtually unique chest X-ray finding, often recognized by public health officials if they receive timely reports). By making these data available to local public health officials in real time, most models of anthrax epidemics indicate that more than 80% of an exposed population can receive antibiotic treatment before becoming symptomatic, and thus avoid the moderately high mortality of the disease.

Identification of bioweapons

The goal of biodefense is to integrate the sustained efforts of the national and homeland security, medical, public health, intelligence, diplomatic, and police communities. Health care providers and public health officers are among the first lines of defense. In some countries private, local, and provincial (state) capabilities are being augmented by and coordinated with federal assets, to provide layered defenses against biological weapons attacks. During the first Gulf War the United Nations activated a biological and chemical response team, Task Force Scorpio, to respond to any potential use of weapons of mass destruction on civilians.

The traditional approach toward protecting agriculture, food, and water: focusing on the natural or unintentional introduction of a disease is being strengthened by focused efforts to address current and anticipated future biological weapons threats that may be deliberate, multiple, and repetitive.

The growing threat of biowarfare agents and bioterrorism has led to the development of specific field tools that perform on-the-spot analysis and identification of encountered suspect materials. One such technology, being developed by researchers from the Lawrence Livermore National Laboratory (LLNL), employs a "sandwich immunoassay", in which fluorescent dye-labeled antibodies aimed at specific pathogens are attached to silver and gold nanowires. [2]

The U.S. National Institute of Allergy and Infectious Diseases (NIAID) also participates in the identification and prevention of biowarfare and first released a strategy for biodefense in 2002, periodically releasing updates as new pathogens are becoming topics of discussion. Within this list of strategies, responses for specific infectious agents are provided, along with the classification of these agents. NIAID provides countermeasures after the U.S. Department of Homeland Security details which pathogens hold the most threat.

Planning and response

Planning may involve the training human resources specialist and development of biological identification systems. Until recently in the United States, most biological defense strategies have been geared to protecting soldiers on the battlefield rather than ordinary people in cities. Financial cutbacks have limited the tracking of disease outbreaks. Some outbreaks, such as food poisoning due to E. coli or Salmonella , could be of either natural or deliberate origin.

Human Resource Training Programs

To date, several endangered countries have designed various training programs at their universities to train specialized personnel to deal with biological threats(for example: George Mason University Biodefense PhD program (USA) [3] or Biodefense Strategic Studies PhD program designated by Dr Reza Aghanouri(Iran) [4] ). These programs are designed to prepare students and officers to serve as scholars and professionals in the fields of biodefense and biosecurity. These programs integrates knowledge of natural and man-made biological threats with the skills to develop and analyze policies and strategies for enhancing biosecurity. Other areas of biodefense, including nonproliferation, intelligence and threat assessment, and medical and public health preparedness are integral parts of these programs.

Preparedness

Biological agents are relatively easy to obtain by terrorists and are becoming more threatening in the U.S., and laboratories are working on advanced detection systems to provide early warning, identify contaminated areas and populations at risk, and to facilitate prompt treatment. Methods for predicting the use of biological agents in urban areas as well as assessing the area for the hazards associated with a biological attack are being established in major cities. In addition, forensic technologies are working on identifying biological agents, their geographical origins and/or their initial son. Efforts include decontamination technologies to restore facilities without causing additional environmental concerns.

Early detection and rapid response to bioterrorism depend on close cooperation between public health authorities and law enforcement; however, such cooperation is currently lacking. National detection assets and vaccine stockpiles are not useful if local and state officials do not have access to them. [5]

United States strategy

In October 2022, the Biden Administration published the "National Biodefense Strategy and Implementation Plan for Countering Biological Threats, Enhancing Pandemic Preparedness, and Achieving Global Health." [6] It updates the Trump Administration's 2018 National Biodefense Strategy. [7]

The U.S. government had a comprehensive defense strategy against bioterror attacks in 2004, when then-President George W. Bush signed a Homeland Security Presidential Directive 10. [8] The directive laid out the country's 21st Century biodefense system and assigned various tasks to federal agencies that would prevent, protect and mitigate biological attacks against our homeland and global interests. Until 2018, however, the federal government did not have a comprehensive biodefense strategy. [9]

Biosurveillance

In 1999, the University of Pittsburgh's Center for Biomedical Informatics deployed the first automated bioterrorism detection system, called RODS (Real-Time Outbreak Disease Surveillance). RODS is designed to draw collect data from many data sources and use them to perform signal detection, that is, to detect a possible bioterrorism event at the earliest possible moment. RODS, and other systems like it, collect data from sources including clinic data, laboratory data, and data from over-the-counter drug sales. [10] [11] In 2000, Michael Wagner, the codirector of the RODS laboratory, and Ron Aryel, a subcontractor, conceived the idea of obtaining live data feeds from "non-traditional" (non-health-care) data sources. The RODS laboratory's first efforts eventually led to the establishment of the National Retail Data Monitor, a system which collects data from 20,000 retail locations nationwide. [10]

On February 5, 2002, George W. Bush visited the RODS laboratory and used it as a model for a $300 million spending proposal to equip all 50 states with biosurveillance systems. In a speech delivered at the nearby Masonic temple, Bush compared the RODS system to a modern "DEW" line (referring to the Cold War ballistic missile early warning system). [12]

The principles and practices of biosurveillance, a new interdisciplinary science, were defined and described in the Handbook of Biosurveillance, edited by Michael Wagner, Andrew Moore and Ron Aryel, and published in 2006. Biosurveillance is the science of real-time disease outbreak detection. Its principles apply to both natural and man-made epidemics (bioterrorism).

Data which potentially could assist in early detection of a bioterrorism event include many categories of information. Health-related data such as that from hospital computer systems, clinical laboratories, electronic health record systems, medical examiner record-keeping systems, 911 call center computers, and veterinary medical record systems could be of help; researchers are also considering the utility of data generated by ranching and feedlot operations, food processors, drinking water systems, school attendance recording, and physiologic monitors, among others. [11] Intuitively, one would expect systems which collect more than one type of data to be more useful than systems which collect only one type of information (such as single-purpose laboratory or 911 call-center based systems), and be less prone to false alarms, and this appears to be the case.

In Europe, disease surveillance is beginning to be organized on the continent-wide scale needed to track a biological emergency. The system not only monitors infected persons, but attempts to discern the origin of the outbreak.

Researchers are experimenting with devices to detect the existence of a threat:

New research shows that ultraviolet avalanche photodiodes offer the high gain, reliability and robustness needed to detect anthrax and other bioterrorism agents in the air. The fabrication methods and device characteristics were described at the 50th Electronic Materials Conference in Santa Barbara on June 25, 2008. Details of the photodiodes were also published in the February 14, 2008 issue of the journal Electronics Letters and the November 2007 issue of the journal IEEE Photonics Technology Letters. [13]

The United States Department of Defense conducts global biosurveillance through several programs, including the Global Emerging Infections Surveillance and Response System. [14]

Response to bioterrorism incident or threat

Government agencies which would be called on to respond to a bioterrorism incident would include law enforcement, hazardous materials/decontamination units and emergency medical units. The US military has specialized units, which can respond to a bioterrorism event; among them are the United States Marine Corps' Chemical Biological Incident Response Force and the U.S. Army's 20th Support Command (CBRNE), which can detect, identify, and neutralize threats, and decontaminate victims exposed to bioterror agents. There are four hospitals capable of caring for anyone with an exposure to a BSL3 or BSL4 pathogen, the special clinical studies unit at National Institutes of Health is one of them. National Institutes of Health built a facility in April 2010. This unit has state of the art isolation capabilities with a unique airflow system. This unit is also being trained to care for patients who are ill due to a highly infectious pathogen outbreak, such as ebola. The doctors work closely with USAMRIID, NBACC and IRF. Special trainings take place regularly in order to maintain a high level of confidence to care for these patients.

Biodefense market

In 2015, global biodefense market was estimated at $9.8 billion. Experts correlated the large marketplace to an increase in government attention and support as a result of rising bioterrorism threats worldwide. Government's heightened interest is anticipated expand the industry into the foreseeable future. According to Medgadget.com, "Many government legislations like Project Bioshield offers nations with counter measures against chemical, radiological, nuclear and biological attack." [15]

Project Bioshield offers accessible biological countermeasures targeting various strains of smallpox and anthrax. "Main goal of the project is creating funding authority to build next generation counter measures, make innovative research & development programs and create a body like FDA (Food & Drug Administration) that can effectively use treatments in case of emergencies." [15] Increased funding, in addition to public health organizations' elevated consideration in biodefense technology investments, could trigger growth in the global biodefense market. [15]

The global biodefense market is divided into geographical locations such as APAC, Latin America, Europe, MEA, and North America. The biodefense industry in North America lead the global industry by a large margin, making it the highest regional revenue share for 2015, contributing approximately $8.91 billion of revenue this year, due to immense funding and government reinforcements. The biodefense market in Europe is predicted to register a CAGR of 11.41% by the forecast timeline. The United Kingdom's Ministry of Defense granted $75.67 million designated for defense & civilian research, making it the highest regional industry share for 2012. [15]

In 2016, Global Market Insights released a report covering the new trends in the biodefense market backed by detailed, scientific data. Industry leaders in biodefense market include the following corporations: Emergent Biosolutions, SIGA Technologies, Ichor Medical Systems Incorporation, PharmaAthene, Cleveland BioLabs Incorporation, Achaogen (bankrupt in 2019 [16] ), Alnylam Pharmaceuticals, Avertis, [17] Xoma Corporation, Dynavax Technologies Incorporation, Elusys Therapeutics, DynPort Vaccine Company LLC, Bavarian Nordic and Nanotherapeutics Incorporation. [15]

Legislation

During the 115th Congress in July 2018, four Members of Congress, both Republican and Democrat (Anna Eshoo, Susan Brooks, Frank Palone and Greg Walden) introduced biodefense legislation called the Pandemic and All Hazards Preparedness and Advancing Innovation Act (PAHPA) (H.R. 6378). The bill strengthens the federal government's preparedness to deal with a wide range of public health emergencies, whether created through an act of bioterrorism or occurring through a natural disaster. The bill reauthorizes funding to improve bioterrorism and other public health emergency preparedness and response activities such as the Hospital Preparedness Program, the Public Health Emergency Preparedness Cooperative Agreement, Project BioShield, and BARDA for the advanced research and development of medical countermeasures (MCMs). [18]

H.R. 6378 has 24 cosponsors from both political parties. On September 25, 2018, the House of Representatives passed the bill. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Bioterrorism</span> Terrorism involving biological agents

Bioterrorism is terrorism involving the intentional release or dissemination of biological agents. These agents include bacteria, viruses, insects, fungi, and/or their toxins, and may be in a naturally occurring or a human-modified form, in much the same way as in biological warfare. Further, modern agribusiness is vulnerable to anti-agricultural attacks by terrorists, and such attacks can seriously damage economy as well as consumer confidence. The latter destructive activity is called agrobioterrorism and is a subtype of agro-terrorism.

Biosecurity refers to measures aimed at preventing the introduction and/or spread of harmful organisms intentionally or unintentionally outside their native range and/or within new environments. In agriculture, these measures are aimed at protecting food crops and livestock from pests, invasive species, and other organisms not conducive to the welfare of the human population. The term includes biological threats to people, including those from pandemic diseases and bioterrorism. The definition has sometimes been broadened to embrace other concepts, and it is used for different purposes in different contexts.

<span class="mw-page-title-main">United States Army Medical Research Institute of Infectious Diseases</span> U.S. Army counter-biological warfare research institution

The United States Army Medical Research Institute of Infectious Diseases is the U.S Army's main institution and facility for defensive research into countermeasures against biological warfare. It is located on Fort Detrick, Maryland, near Washington, D.C., and is a subordinate lab of the United States Army Medical Research and Development Command (USAMRDC), headquartered on the same installation.

The National Biodefense Analysis and Countermeasures Center (NBACC) is a government biodefense research laboratory created by the U.S. Department of Homeland Security (DHS) and located at the sprawling biodefense campus at Fort Detrick in Frederick, MD, USA. The NBACC is the principal U.S. biodefense research institution engaged in laboratory-based threat assessment and bioforensics. NBACC is an important part of the National Interagency Biodefense Campus (NIBC) also located at Fort Detrick for the US Army, National Institutes of Health and the US Department of Agriculture.

<span class="mw-page-title-main">Autonomous detection system</span> Automated biohazard detection system

Autonomous Detection Systems (ADS), also called biohazard detection systems or autonomous pathogen detection systems, are designed to monitor air or water in an environment and to detect the presence of airborne or waterborne chemicals, toxins, pathogens, or other biological agents capable of causing human illness or death. These systems monitor air or water continuously and send real-time alerts to appropriate authorities in the event of an act of bioterrorism or biological warfare.

<span class="mw-page-title-main">Project Bioshield Act</span> US law

The Project Bioshield Act was an act passed by the United States Congress in 2004 calling for $5 billion for purchasing vaccines that would be used in the event of a bioterrorist attack. This was a ten-year program to acquire medical countermeasures to biological, chemical, radiological, and nuclear agents for civilian use. A key element of the Act was to allow stockpiling and distribution of vaccines which had not been tested for safety or efficacy in humans, due to ethical concerns. Efficacy of such agents cannot be directly tested in humans without also exposing humans to the chemical, biological, or radioactive threat being treated, so testing follows the FDA Animal Rule for pivotal animal efficacy.

BioWatch is a United States federal government program to detect the release of pathogens into the air as part of a terrorist attack on major American cities. Reportedly operating in Philadelphia, New York City, Washington, DC, San Diego, Boston, Chicago, San Francisco, Atlanta, St. Louis, Houston, Los Angeles and 21 other cities, the BioWatch program was created in 2001 in response to the increased threat of bioterrorism sparked by the 2001 anthrax attacks, and was announced in President George W. Bush's State of the Union Address of 2003.

<span class="mw-page-title-main">Biomedical Advanced Research and Development Authority</span> Government organization in Washington D.C., United States

The Biomedical Advanced Research and Development Authority (BARDA)' is a U.S. Department of Health and Human Services (HHS) office responsible for the procurement and development of medical countermeasures, principally against bioterrorism, including chemical, biological, radiological and nuclear (CBRN) threats, as well as pandemic influenza and emerging diseases. BARDA was established in 2006 through the Pandemic and All-Hazards Preparedness Act (PAHPA) and reports to the Office of the Assistant Secretary for Preparedness and Response (ASPR). The office manages Project BioShield, which funds the research, development and stockpiling of vaccines and treatments that the government could use during public health emergencies such as chemical, biological, radiological or nuclear (CBRN) attacks.

<span class="mw-page-title-main">Administration for Strategic Preparedness and Response</span> US government agency

The Administration for Strategic Preparedness and Response (ASPR) is an operating agency of the U.S. Public Health Service within the Department of Health and Human Services that focuses preventing, preparing for, and responding to the adverse health effects of public health emergencies and disasters. Its functions include preparedness planning and response; building federal emergency medical operational capabilities; countermeasures research, advance development, and procurement; and grants to strengthen the capabilities of hospitals and health care systems in public health emergencies and medical disasters. The office provides federal support, including medical professionals through ASPR’s National Disaster Medical System, to augment state and local capabilities during an emergency or disaster.

<span class="mw-page-title-main">Pandemic and All-Hazards Preparedness Act</span> U.S. Federal law

On December 19, 2006, the Pandemic and All-Hazards Preparedness Act (PAHPA), Public Law No. 109-417, was signed into law by President George W. Bush. First introduced in the House by Rep. Mike Rogers (R-MI) and Rep. Anna Eshoo (D-CA), PAHPA had broad implications for the United States Department of Health and Human Services's (HHS) preparedness and response activities. Among other things, the act amended the Public Health Service Act to establish within the department a new Assistant Secretary for Preparedness and Response (ASPR); provided new authorities for a number of programs, including the advanced development and acquisitions of medical countermeasures; and called for the establishment of a quadrennial National Health Security Strategy.

Atlantic Storm was a ministerial exercise simulating the top-level response to a bioterror incident. The simulation operated on January 14, 2005, in Washington, D.C. It was created in part to reveal the current international state of preparedness and possible political and public health issues that might evolve from such a crisis.

Biosecurity in the United States is governed by the Bureau of Western Hemisphere Affairs, which is part of the US Department of State. It obtains guidance and advice on specific matters relating to biosecurity from various other government agencies.

The United States Biological Defense Program—in recent years also called the National Biodefense Strategy—refers to the collective effort by all levels of government, along with private enterprise and other stakeholders, in the United States to carry out biodefense activities.

The United States National Biosurveillance Strategy is the plan to implement a biosurveillance system that will monitor and interpret data that might relate to disease activity and threats to human or animal health – whether infectious, toxic, metabolic, and regardless of intentional or natural origin – in order to achieve early warning of health threats, early detection of health events and overall situational awareness of disease activity.

The Bipartisan Commission on Biodefense, formerly known as the Blue Ribbon Study Panel on Biodefense, is an organization of former high-ranking government officials that analyzes US capabilities and capacity to defend against biological threats. According to the Commission's mission statement, the organization was formed to "provide for a comprehensive assessment of the state of U.S. biodefense efforts, and to issue recommendations that will foster change."

<span class="mw-page-title-main">Strengthening Public Health Emergency Response Act of 2015</span>

The Strengthening Public Health Emergency Response Act of 2015, H.R. 3299, is a bill introduced in the U.S. House of Representatives that would streamline government decisions and provide incentives for vaccines and treatment of dangerous pathogens and diseases. The bill was introduced by Representatives Susan Brooks (R-IN) and Anna Eshoo (D-CA).

<span class="mw-page-title-main">National Biodefense Strategy Act of 2016</span> Proposed congressional bill

The National Biodefense Strategy Act of 2016 is a bill introduced in the United States Senate by U.S. Senator Ron Johnson (R-Wisconsin). The bill would amend the Homeland Security Act of 2002 by requiring the government to change its current policy and programs to coordinate and improve biodefense preparedness. Johnson is the current chairman of the Senate Committee on Homeland Security and Governmental Affairs.

<span class="mw-page-title-main">Alliance for Biosecurity</span>

The Alliance for Biosecurity is a consortium of companies that develop products to respond to national security threats, including bioterrorism pathogens and emerging infectious diseases. It is headquartered in Washington DC.

In the United States, the National Biodefense Strategy is a White House-issued policy document laying out the federal government's approach to biodefense and biosecurity.

Crystal Watson is a senior scholar at the Johns Hopkins Center for Health Security and an associate professor in the Department of Environmental Health and Engineering. She is an expert in health security, biodefense, and risk assessment and preparedness for emerging infectious diseases. She is currently working on the public health response to the COVID-19 pandemic.

References

Citations

  1. National Biodefense Strategy and Implementation Plan for Countering Biological Threats, Enhancing Pandemic Preparedness, and Achieving Global Health (PDF). White House. October 2022.
  2. "Physorg.com, "Encoded Metallic Nanowires Reveal Bioweapons", 12:50 EST, August 10, 2006".
  3. "Latest News".
  4. "If we backed down on nuclear energy, they would come to nanotechnology tomorrow" (in Persian). January 14, 2008.
  5. Bernett, Brian C. (December 2006), US Biodefense and Homeland Security: Toward Detection and Attribution (PDF), Monterey, California, United States: Naval Postgraduate School, p. 21, archived from the original (PDF) on February 29, 2008, retrieved May 24, 2009
  6. National Biodefense Strategy and Implementation Plan for Countering Biological Threats, Enhancing Pandemic Preparedness, and Achieving Global Health (PDF). White House. October 2022.
  7. National Biodefense Strategy (8 September 2018). White House, National Security Council. White House website Archived 2021-01-20 at the Wayback Machine Retrieved 20 March 2020.
  8. Homeland Security Presidential Directive - 10 (PDF). U.S. Government Printing Office. 2004. pp. 57–65.
  9. Rozens, Tracy (September 2, 2016). "RAND's Gerstein: U.S. needs biodefense strategy to protect against terror threats". Homeland Preparedness News. Retrieved December 2, 2016.
  10. 1 2 Wagner, Michael M.; Espino, Jeremy; et al. (2004), "The role of clinical information systems in public health surveillance", Healthcare Information Management Systems (3 ed.), New York: Springer-Verlag, pp. 513–539
  11. 1 2 Wagner, Michael M.; Aryel, Ron; et al. (November 28, 2001), Availability and Comparative Value of Data Elements Required for an Effective Bioterrorism Detection System (PDF), Real-time Outbreak and Disease Surveillance Laboratory, archived from the original (PDF) on March 3, 2011, retrieved May 22, 2009
  12. Togyer, Jason (June 2002), Pitt Magazine: Airborne Defense, University of Pittsburgh, archived from the original on June 16, 2010, retrieved May 22, 2009
  13. Avalanche Photodiodes Target Bioterrorism Agents Newswise, Retrieved on June 25, 2008.
  14. Pellerin, Cheryl. "Global Nature of Terrorism Drives Biosurveillance." Archived January 12, 2013, at the Wayback Machine American Forces Press Service, 27 October 2011.
  15. 1 2 3 4 5 "Biodefense Market size worth $17bn by 2024". Medgadget.com. September 26, 2016. Archived from the original on October 5, 2016. Retrieved October 3, 2016.
  16. Jacobs, Andrew (December 25, 2019). "Crisis Looms in Antibiotics as Drug Makers Go Bankrupt". The New York Times. Retrieved November 23, 2022.
  17. "Next Generation Biodefense". Surturian.com. February 20, 2021. Retrieved February 20, 2021.
  18. "Eshoo, Brooks Introduce Legislation to Combat Biodefense Threats" . Retrieved November 30, 2018.
  19. Susan, Brooks (September 26, 2018). "Actions - H.R.6378 - 115th Congress (2017-2018): Pandemic and All-Hazards Preparedness and Advancing Innovation Act of 2018". www.congress.gov. Retrieved November 30, 2018.

Other sources