Blood sugar level

Last updated

The fluctuation of blood sugar (red) and the sugar-lowering hormone insulin (blue) in humans during the course of a day with three meals. One of the effects of a sugar-rich vs a starch-rich meal is highlighted. Suckale08 fig3 glucose insulin day.png
The fluctuation of blood sugar (red) and the sugar-lowering hormone insulin (blue) in humans during the course of a day with three meals. One of the effects of a sugar-rich vs a starch-rich meal is highlighted.

The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. [2]

Contents

For a 70 kg (154 lb) human, approximately four grams of dissolved glucose (also called "blood glucose") is maintained in the blood plasma at all times. [2] Glucose that is not circulating in the blood is stored in skeletal muscle and liver cells in the form of glycogen; [2] in fasting individuals, blood glucose is maintained at a constant level by releasing just enough glucose from these glycogen stores in the liver and skeletal muscle in order to maintain homeostasis. [2] Glucose can be transported from the intestines or liver to other tissues in the body via the bloodstream. [2] Cellular glucose uptake is primarily regulated by insulin, a hormone produced in the pancreas. [2] Once inside the cell, the glucose can now act as an energy source as it undergoes the process of glycolysis.

In humans, properly maintained glucose levels are necessary for normal function in a number of tissues, including the human brain, which consumes approximately 60% of blood glucose in fasting, sedentary individuals. [2] A persistent elevation in blood glucose leads to glucose toxicity, which contributes to cell dysfunction and the pathology grouped together as complications of diabetes. [2]

Glucose levels are usually lowest in the morning, before the first meal of the day, and rise after meals for an hour or two by a few millimoles.

Abnormal persistently high glycemia is referred to as hyperglycemia; low levels are referred to as hypoglycemia. Diabetes mellitus is characterized by persistent hyperglycemia from a variety of causes, and it is the most prominent disease related to the failure of blood sugar regulation. There are different methods of testing and measuring blood sugar levels.

Drinking alcohol causes an initial surge in blood sugar and later tends to cause levels to fall. Also, certain drugs can increase or decrease glucose levels. [3]

Units

There are two ways of measuring blood glucose levels: In the United Kingdom and Commonwealth countries (Australia, Canada, India, etc.) and ex-USSR countries molar concentration, measured in mmol/L (millimoles per litre, or millimolar, abbreviated mM). In the United States, Germany, Japan and many other countries mass concentration is measured in mg/dl (milligrams per decilitre). [4]

Since the molecular mass of glucose C6H12O6 is approximately 180 g/mol, the difference between the two units is a factor of about 18, so 1 mmol/L of glucose is equivalent to 18 mg/dL. [5] [ better source needed ]

Normal value range

Humans

Normal blood glucose level (tested while fasting) for non-diabetics should be 3.9 - 5.5 mmol/L (70 -100 mg/dL). [6] [7] [8]

According to the American Diabetes Association, the fasting blood glucose target range for diabetics, should be 3.9 - 7.2 mmol/L (70 - 130 mg/dL) and less than 10 mmol/L (180 mg/dL) two hours after meals (as measured by a blood glucose monitor). [6] [7] [9]

Normal value ranges may vary slightly between laboratories. Glucose homeostasis, when operating normally, restores the blood sugar level to a narrow range of about 4.4 to 6.1 mmol/L (79 to 110 mg/dL) (as measured by a fasting blood glucose test). [10]

The global mean fasting plasma blood glucose level in humans is about 5.5 mmol/L (100 mg/dL); [11] [5] however, this level fluctuates throughout the day. Blood sugar levels for those without diabetes and who are not fasting should be below 6.9 mmol/L (125 mg/dL). [12]

Despite widely variable intervals between meals or the occasional consumption of meals with a substantial carbohydrate load, human blood glucose levels tend to remain within the normal range. However, shortly after eating, the blood glucose level may rise, in non-diabetics, temporarily up to 7.8 mmol/L (140 mg/dL) or slightly more.

The actual amount of glucose in the blood and body fluids is very small. In a healthy adult male of 75 kg (165 lb) with a blood volume of 5 L, a blood glucose level of 5.5 mmol/L (100 mg/dL) amounts to 5 g, equivalent to about a teaspoonful of sugar. [13] Part of the reason why this amount is so small is that, to maintain an influx of glucose into cells, enzymes modify glucose by adding phosphate or other groups to it.[ citation needed ]

Other animals

In general, ranges of blood sugar in common domestic ruminants are lower than in many monogastric mammals. [14] However this generalization does not extend to wild ruminants or camelids. For serum glucose in mg/dL, reference ranges of 42 to 75 for cows, 44 to 81 for sheep, and 48 to 76 for goats, but 61 to 124 for cats; 62 to 108 for dogs, 62 to 114 for horses, 66 to 116 for pigs, 75 to 155 for rabbits, and 90 to 140 for llamas have been reported. [15] A 90 percent reference interval for serum glucose of 26 to 181 mg/dL has been reported for captured mountain goats ( Oreamnos americanus ), where no effects of the pursuit and capture on measured levels were evident. [16] For beluga whales, the 25–75 percent range for serum glucose has been estimated to be 94 to 115 mg/dL. [17] For the white rhinoceros, one study has indicated that the 95 percent range is 28 to 140 mg/dL. [18] For harp seals, a serum glucose range of 4.9 to 12.1 mmol/L [i.e. 88 to 218 mg/dL] has been reported; for hooded seals, a range of 7.5 to 15.7 mmol/L [i.e. about 135 to 283 mg/dL] has been reported. [19]

Regulation

The body's homeostatic mechanism keeps blood glucose levels within a narrow range. It is composed of several interacting systems, of which hormone regulation is the most important. [20]

There are two types of mutually antagonistic metabolic hormones affecting blood glucose levels:

These hormones are secreted from pancreatic islets (bundles of endocrine tissues), of which there are four types: alpha (A) cells, beta (B) cells, Delta (D) cells and F cells. Glucagon is secreted from alpha cells, while insulin is secreted by beta cells. Together they regulate the blood-glucose levels through negative feedback, a process where the end product of one reaction stimulates the beginning of another reaction. In blood-glucose levels, insulin lowers the concentration of glucose in the blood. The lower blood-glucose level (a product of the insulin secretion) triggers glucagon to be secreted, and repeats the cycle. [22]

In order for blood glucose to be kept stable, modifications to insulin, glucagon, epinephrine and cortisol are made. Each of these hormones has a different responsibility to keep blood glucose regulated; when blood sugar is too high, insulin tells muscles to take up excess glucose for storage in the form of glycogen. Glucagon responds to too low of a blood glucose level; it informs the tissue to release some glucose from the glycogen stores. Epinephrine prepares the muscles and respiratory system for activity in the case of a "fight or flight" response. Lastly, cortisol supplies the body with fuel in times of heavy stress. [23]

Abnormalities

High blood sugar

If blood sugar levels remain too high the body suppresses appetite over the short term. Long-term hyperglycemia causes many health problems including heart disease, cancer, [24] eye, kidney, and nerve damage. [25]

Blood sugar levels above 16.7 mmol/L (300 mg/dL) can cause fatal reactions. Ketones will be very high (a magnitude higher than when eating a very low carbohydrate diet) initiating ketoacidosis. The ADA (American Diabetes Association) recommends seeing a doctor if blood glucose reaches 13.3 mmol/L (240 mg/dL), [26] and it is recommended to seek emergency treatment at 15 mmol/L (270 mg/dL) blood glucose if Ketones are present. [27] The most common cause of hyperglycemia is diabetes. When diabetes is the cause, physicians typically recommend an anti-diabetic medication as treatment. From the perspective of the majority of patients, treatment with an old, well-understood diabetes drug such as metformin will be the safest, most effective, least expensive, and most comfortable route to managing the condition. Treatment will vary for the distinct forms of Diabetes and can differ from person to person based on how they are reacting to treatment. [28] Diet changes and exercise implementation may also be part of a treatment plan for diabetes. [29]

Some medications may cause a rise in blood sugars of diabetics, such as steroid medications, including cortisone, hydrocortisone, prednisolone, prednisone, and dexamethasone. [30]

Low blood sugar

When the blood sugar level is below 70 mg/dL, this is referred to as having low blood sugar. Low blood sugar is very frequent among type 1 diabetics. There are several causes of low blood sugar, including, taking an excessive amount of insulin, not consuming enough carbohydrates, drinking alcohol, spending time at a high elevation, puberty, and menstruation. [31] If blood sugar levels drop too low, a potentially fatal condition called hypoglycemia develops. Symptoms may include lethargy, impaired mental functioning; irritability; shaking, twitching, weakness in arm and leg muscles; pale complexion; sweating; loss of consciousness.[ citation needed ]

Mechanisms that restore satisfactory blood glucose levels after extreme hypoglycemia (below 2.2 mmol/L or 40 mg/dL) must be quick and effective to prevent extremely serious consequences of insufficient glucose: confusion or unsteadiness and, in the extreme (below 0.8 mmol/L or 15 mg/dL) loss of consciousness and seizures. Without discounting the potentially quite serious conditions and risks due to or oftentimes accompanying hyperglycemia, especially in the long-term (diabetes or pre-diabetes, obesity or overweight, hyperlipidemia, hypertension, etc.), it is still generally more dangerous to have too little glucose – especially if levels are very low – in the blood than too much, at least temporarily, because glucose is so important for metabolism and nutrition and the proper functioning of the body's organs. This is especially the case for those organs that are metabolically active or that require a constant, regulated supply of blood sugar (the liver and brain are examples). Symptomatic hypoglycemia is most likely associated with diabetes and liver disease (especially overnight or postprandial), without treatment or with wrong treatment, possibly in combination with carbohydrate malabsorption, physical over-exertion or drugs. Many other less likely illnesses, like cancer, could also be a reason. Starvation, possibly due to eating disorders, like anorexia, will also eventually lead to hypoglycemia. Hypoglycemic episodes can vary greatly between persons and from time to time, both in severity and swiftness of onset. For severe cases, prompt medical assistance is essential, as damage to brain and other tissues and even death will result from sufficiently low blood-glucose levels.[ citation needed ]

Glucose measurement

In the past to measure blood glucose it was necessary to take a blood sample, as explained below, but since 2015 it has also been possible to use a continuous glucose monitor, which involves an electrode placed under the skin. Both methods, as of 2023, cost hundreds of dollars or euros per year for supplies needed.[ citation needed ]

Sample source

Glucose testing in a fasting individual shows comparable levels of glucose in arterial, venous, and capillary blood. But following meals, capillary and arterial blood glucose levels can be significantly higher than venous levels. Although these differences vary widely, one study found that following the consumption of 50 grams of glucose, "the mean capillary blood glucose concentration is higher than the mean venous blood glucose concentration by 35%." [32] [33]

Sample type

Glucose is measured in whole blood, plasma or serum. Historically, blood glucose values were given in terms of whole blood, but most laboratories now measure and report plasma or serum glucose levels. Because red blood cells (erythrocytes) have a higher concentration of protein (e.g., hemoglobin) than serum, serum has a higher water content and consequently more dissolved glucose than does whole blood. To convert from whole-blood glucose, multiplication by 1.14 [34] has been shown to generally give the serum/plasma level.

To prevent contamination of the sample with intravenous fluids, particular care should be given to drawing blood samples from the arm opposite the one in which an intravenous line is inserted. Alternatively, blood can be drawn from the same arm with an IV line after the IV has been turned off for at least 5 minutes, and the arm has been elevated to drain infused fluids away from the vein. Inattention can lead to large errors, since as little as 10% contamination with a 5% glucose solution (D5W) will elevate glucose in a sample by 500 mg/dL or more. The actual concentration of glucose in blood is very low, even in the hyperglycemic.[ citation needed ]

Measurement techniques

Two major methods have been used to measure glucose. The first, still in use in some places, is a chemical method exploiting the nonspecific reducing property of glucose in a reaction with an indicator substance that changes color when reduced. Since other blood compounds also have reducing properties (e.g., urea, which can be abnormally high in uremic patients), this technique can produce erroneous readings in some situations (5–15 mg/dL has been reported). The more recent technique, using enzymes specific to glucose, is less susceptible to this kind of error. The two most common employed enzymes are glucose oxidase and hexokinase. [35] Average blood glucose concentrations can also be measured. This method measures the level of glycated hemoglobin, which is representative of the average blood glucose levels over the last, approximately, 120 days. [35]

In either case, the chemical system is commonly contained on a test strip which is inserted into a meter, and then has a blood sample applied. Test-strip shapes and their exact chemical composition vary between meter systems and cannot be interchanged. Formerly, some test strips were read (after timing and wiping away the blood sample) by visual comparison against a color chart printed on the vial label. Strips of this type are still used for urine glucose readings, but for blood glucose levels they are obsolete. Their error rates were, in any case, much higher. Errors when using test strips were often caused by the age of the strip or exposure to high temperatures or humidity. [36] More precise blood glucose measurements are performed in a medical laboratory, using hexokinase, glucose oxidase, or glucose dehydrogenase enzymes.

Urine glucose readings, however taken, are much less useful. In properly functioning kidneys, glucose does not appear in urine until the renal threshold for glucose has been exceeded. This is substantially above any normal glucose level, and is evidence of an existing severe hyperglycemic condition. However, as urine is stored in the bladder, any glucose in it might have been produced at any time since the last time the bladder was emptied. Since metabolic conditions change rapidly, as a result of any of several factors, this is delayed news and gives no warning of a developing condition. [37] Blood glucose monitoring is far preferable, both clinically and for home monitoring by patients. Healthy urine glucose levels were first standardized and published in 1965 [38] by Hans Renschler.

A noninvasive method of sampling to monitor glucose levels has emerged using an exhaled breath condensate. However this method does need highly sensitive glucose biosensors. [39]

I. Chemical methods
A. Oxidation-reduction reaction
1. Alkaline copper reduction
Folin-Wu methodBlue end-product
Benedict's method
  • Modification of Folin–Wu method for qualitative urine glucose.
Nelson–Somogyi methodBlue end-product.
Neocuproine method*Yellow-orange color neocuproine [40]
Shaeffer–Hartmann–Somogyi
  • Uses the principle of iodine reaction with cuprous byproduct.
  • Excess I2 is then titrated with thiosulfate.
2. Alkaline Ferricyanide reduction
Hagedorn–JensenColorless end product; other reducing substances interfere with reaction.
B. Condensation
Ortho-toluidine method
Anthrone (phenols) method
  • Forms hydroxymethyl furfural in hot acetic acid
II. Enzymatic methods
A. Glucose oxidase
Saifer–Gerstenfeld methodInhibited by reducing substances like BUA, bilirubin, glutathione, ascorbic acid.
Trinder method
Kodak Ektachem
  • A dry chemistry method.
  • Uses spectrophotometry to measure the intensity of color through a lower transparent film.
Glucometer
  • Home monitoring blood glucose assay method.
  • Uses a strip impregnated with a glucose oxidase reagent.
B. Hexokinase

  • NADP as cofactor.
  • NADPH (reduced product) is measured in 340 nm.
  • More specific than glucose oxidase method due to G-6PO4, which inhibits interfering substances except when sample is hemolyzed.

Clinical correlation

The fasting blood glucose level, which is measured after a fast of 8 hours, is the most commonly used indication of overall glucose homeostasis, largely because disturbing events such as food intake are avoided. Conditions affecting glucose levels are shown in the table below. Abnormalities in these test results are due to problems in the multiple control mechanism of glucose regulation.[ citation needed ]

The metabolic response to a carbohydrate challenge is conveniently assessed by a postprandial glucose level drawn 2 hours after a meal or a glucose load. In addition, the glucose tolerance test, consisting of several timed measurements after a standardized amount of oral glucose intake, is used to aid in the diagnosis of diabetes.[ citation needed ]

Error rates for blood glucose measurements systems vary, depending on laboratories, and on the methods used. Colorimetry techniques can be biased by color changes in test strips (from airborne or finger-borne contamination, perhaps) or interference (e.g., tinting contaminants) with light source or the light sensor. Electrical techniques are less susceptible to these errors, though not to others. In home use, the most important issue is not accuracy, but trend. Thus if a meter / test strip system is consistently wrong by 10%, there will be little consequence, as long as changes (e.g., due to exercise or medication adjustments) are properly tracked. In the US, home use blood test meters must be approved by the federal Food and Drug Administration before they can be sold.[ citation needed ]

Finally, there are several influences on blood glucose level aside from food intake. Infection, for instance, tends to change blood glucose levels, as does stress either physical or psychological. Exercise, especially if prolonged or long after the most recent meal, will have an effect as well. In the typical person, maintenance of blood glucose at near constant levels will nevertheless be quite effective.[ clarification needed ]

Causes of abnormal glucose levels
Persistent hyperglycemiaTransient hyperglycemiaPersistent hypoglycemiaTransient hypoglycemia
Reference range, fasting blood glucose (FBG): 70–110 mg/dL
Diabetes mellitus Pheochromocytoma Insulinoma Acute alcohol intoxication or ingestion
Adrenal cortical hyperactivity Cushing's syndrome Severe liver disease Adrenal cortical insufficiency Addison's disease Drugs: salicylates, antituberculosis agents
Hyperthyroidism Acute stress reaction Hypopituitarism Severe liver disease
Acromegaly Shock Galactosemia Several glycogen storage diseases
Obesity Convulsions Ectopic hormone production from tumors Hereditary fructose intolerance

See also

Related Research Articles

<span class="mw-page-title-main">Hypoglycemia</span> Health condition

Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose below 70 mg/dL (3.9 mmol/L), symptoms associated with hypoglycemia, and resolution of symptoms when blood sugar returns to normal. Hypoglycemia may result in headache, tiredness, clumsiness, trouble talking, confusion, fast heart rate, sweating, shakiness, nervousness, hunger, loss of consciousness, seizures, or death. Symptoms typically come on quickly.

Insulin resistance (IR) is a pathological condition in which cells either fail to respond normally to the hormone insulin or downregulate insulin receptors in response to hyperinsulinemia.

<span class="mw-page-title-main">Glucose tolerance test</span> Medical test of how quickly glucose is cleared from the blood

The glucose tolerance test is a medical test in which glucose is given and blood samples taken afterward to determine how quickly it is cleared from the blood. The test is usually used to test for diabetes, insulin resistance, impaired beta cell function, and sometimes reactive hypoglycemia and acromegaly, or rarer disorders of carbohydrate metabolism. In the most commonly performed version of the test, an oral glucose tolerance test (OGTT), a standard dose of glucose is ingested by mouth and blood levels are checked two hours later. Many variations of the GTT have been devised over the years for various purposes, with different standard doses of glucose, different routes of administration, different intervals and durations of sampling, and various substances measured in addition to blood glucose.

<span class="mw-page-title-main">Hyperglycemia</span> Too much blood sugar, usually because of diabetes

Hyperglycemia is a condition in which an excessive amount of glucose circulates in the blood plasma. This is generally a blood sugar level higher than 11.1 mmol/L (200 mg/dL), but symptoms may not start to become noticeable until even higher values such as 13.9–16.7 mmol/L (~250–300 mg/dL). A subject with a consistent fasting blood glucose range between ~5.6 and ~7 mmol/L is considered slightly hyperglycemic, and above 7 mmol/L is generally held to have diabetes. For diabetics, glucose levels that are considered to be too hyperglycemic can vary from person to person, mainly due to the person's renal threshold of glucose and overall glucose tolerance. On average, however, chronic levels above 10–12 mmol/L (180–216 mg/dL) can produce noticeable organ damage over time.

<span class="mw-page-title-main">Glucokinase</span> Enzyme participating to the regulation of carbohydrate metabolism

Glucokinase is an enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Glucokinase occurs in cells in the liver and pancreas of humans and most other vertebrates. In each of these organs it plays an important role in the regulation of carbohydrate metabolism by acting as a glucose sensor, triggering shifts in metabolism or cell function in response to rising or falling levels of glucose, such as occur after a meal or when fasting. Mutations of the gene for this enzyme can cause unusual forms of diabetes or hypoglycemia.

<span class="mw-page-title-main">Gestational diabetes</span> Medical condition

Gestational diabetes is a condition in which a person without diabetes develops high blood sugar levels during pregnancy. Gestational diabetes generally results in few symptoms; however, it increases the risk of pre-eclampsia, depression, and of needing a Caesarean section. Babies born to individuals with poorly treated gestational diabetes are at increased risk of macrosomia, of having hypoglycemia after birth, and of jaundice. If untreated, diabetes can also result in stillbirth. Long term, children are at higher risk of being overweight and of developing type 2 diabetes.

Diabetes is a chronic disease in cats whereby either insufficient insulin response or insulin resistance leads to persistently high blood glucose concentrations. Diabetes affects up to 1 in 230 cats, and may be becoming increasingly common. Diabetes is less common in cats than in dogs. The condition is treatable, and if treated properly the cat can experience a normal life expectancy. In cats with type 2 diabetes, prompt effective treatment may lead to diabetic remission, in which the cat no longer needs injected insulin. Untreated, the condition leads to increasingly weak legs in cats and eventually to malnutrition, ketoacidosis and/or dehydration, and death.

<span class="mw-page-title-main">Glucose meter</span> Medical device for determining the concentration of glucose in the blood

A glucose meter, also referred to as a "glucometer", is a medical device for determining the approximate concentration of glucose in the blood. It can also be a strip of glucose paper dipped into a substance and measured to the glucose chart. It is a key element of glucose testing, including home blood glucose monitoring (HBGM) performed by people with diabetes mellitus or hypoglycemia. A small drop of blood, obtained from slightly piercing a fingertip with a lancet, is placed on a disposable test strip that the meter reads and uses to calculate the blood glucose level. The meter then displays the level in units of mg/dL or mmol/L.

<span class="mw-page-title-main">Diabetic hypoglycemia</span> Medical condition

Diabetic hypoglycemia is a low blood glucose level occurring in a person with diabetes mellitus. It is one of the most common types of hypoglycemia seen in emergency departments and hospitals. According to the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP), and based on a sample examined between 2004 and 2005, an estimated 55,819 cases involved insulin, and severe hypoglycemia is likely the single most common event.

<span class="mw-page-title-main">Reactive hypoglycemia</span> Medical condition

Reactive hypoglycemia, postprandial hypoglycemia, or sugar crash is a term describing recurrent episodes of symptomatic hypoglycemia occurring within four hours after a high carbohydrate meal in people with and without diabetes. The term is not necessarily a diagnosis since it requires an evaluation to determine the cause of the hypoglycemia.

<span class="mw-page-title-main">Type 1 diabetes</span> Form of diabetes mellitus

Type 1 diabetes (T1D), formerly known as juvenile diabetes, is an autoimmune disease that originates when cells that make insulin are destroyed by the immune system. Insulin is a hormone required for the cells to use blood sugar for energy and it helps regulate glucose levels in the bloodstream. Before treatment this results in high blood sugar levels in the body. The common symptoms of this elevated blood sugar are frequent urination, increased thirst, increased hunger, weight loss, and other serious complications. Additional symptoms may include blurry vision, tiredness, and slow wound healing. Symptoms typically develop over a short period of time, often a matter of weeks if not months.

The term diabetes includes several different metabolic disorders that all, if left untreated, result in abnormally high concentrations of a sugar called glucose in the blood. Diabetes mellitus type 1 results when the pancreas no longer produces significant amounts of the hormone insulin, usually owing to the autoimmune destruction of the insulin-producing beta cells of the pancreas. Diabetes mellitus type 2, in contrast, is now thought to result from autoimmune attacks on the pancreas and/or insulin resistance. The pancreas of a person with type 2 diabetes may be producing normal or even abnormally large amounts of insulin. Other forms of diabetes mellitus, such as the various forms of maturity-onset diabetes of the young, may represent some combination of insufficient insulin production and insulin resistance. Some degree of insulin resistance may also be present in a person with type 1 diabetes.

Many types of glucose tests exist and they can be used to estimate blood sugar levels at a given time or, over a longer period of time, to obtain average levels or to see how fast body is able to normalize changed glucose levels. Eating food for example leads to elevated blood sugar levels. In healthy people, these levels quickly return to normal via increased cellular glucose uptake which is primarily mediated by increase in blood insulin levels.

<span class="mw-page-title-main">Diabetes and pregnancy</span> Effects of pre-existing diabetes upon pregnancy

For pregnant women with diabetes, some particular challenges exist for both mother and fetus. If the pregnant woman has diabetes as a pre-existing disorder, it can cause early labor, birth defects, and larger than average infants. Therefore, experts advise diabetics to maintain blood sugar level close to normal range about 3 months before planning for pregnancy.

Hyperosmolar hyperglycemic state (HHS), also known as hyperosmolar non-ketotic state (HONK), is a complication of diabetes mellitus in which high blood sugar results in high osmolarity without significant ketoacidosis. Symptoms include signs of dehydration, weakness, leg cramps, vision problems, and an altered level of consciousness. Onset is typically over days to weeks. Complications may include seizures, disseminated intravascular coagulopathy, mesenteric artery occlusion, or rhabdomyolysis.

<span class="mw-page-title-main">Blood sugar regulation</span> Hormones regulating blood sugar levels

Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range.

An insulin tolerance test (ITT) is a medical diagnostic procedure during which insulin is injected into a patient's vein, after which blood glucose is measured at regular intervals. This procedure is performed to assess pituitary function, adrenal function, insulin sensitivity, and sometimes for other purposes. An ITT is usually ordered and interpreted by an endocrinologist.

Chronic Somogyi rebound is a contested explanation of phenomena of elevated blood sugars experienced by diabetics in the morning. Also called the Somogyi effect and posthypoglycemic hyperglycemia, it is a rebounding high blood sugar that is a response to low blood sugar. When managing the blood glucose level with insulin injections, this effect is counter-intuitive to people who experience high blood sugar in the morning as a result of an overabundance of insulin at night.

Complications of diabetes are secondary diseases that are a result of elevated blood glucose levels that occur in diabetic patients. These complications can be divided into two types: acute and chronic. Acute complications are complications that develop rapidly and can be exemplified as diabetic ketoacidosis (DKA), hyperglycemic hyperosmolar state (HHS), lactic acidosis (LA), and hypoglycemia. Chronic complications develop over time and are generally classified in two categories: microvascular and macrovascular. Microvascular complications include neuropathy, nephropathy, and retinopathy; while cardiovascular disease, stroke, and peripheral vascular disease are included in the macrovascular complications.

Oxyhyperglycemia is a special type of impaired glucose tolerance characterized by a rapid and transient hyperglycemia spike after an oral intake of glucose, the peak of this spike being high enough to cause transient, symptom free glycosuria, but this hyperglycemia reverses rapidly and may even go to hypoglycemia in the later phase. This sharp downstroke overshooting towards hypoglycemia distinguishes this pathologic phenomenon from the artificial hyperglycemia inducible by an intravenous bolus dose of a large amount of glucose solution. Early dumping syndrome patients usually have oxyhyperglycemia associated with any meal or OGTT.

References

  1. Daly ME, Vale C, Walker M, Littlefield A, Alberti KG, Mathers JC (June 1998). "Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet" (PDF). The American Journal of Clinical Nutrition. 67 (6): 1186–96. doi: 10.1093/ajcn/67.6.1186 . PMID   9625092.
  2. 1 2 3 4 5 6 7 8 Wasserman DH (January 2009). "Four grams of glucose". American Journal of Physiology. Endocrinology and Metabolism. 296 (1): E11–21. doi:10.1152/ajpendo.90563.2008. PMC   2636990 . PMID   18840763.
  3. Walker, Rosemary and Rodgers, Jill (2006) Type 2 Diabetes – Your Questions Answered. Dorling Kindersley. ISBN   1-74033-550-3.
  4. "Blood Glucose Monitor and Blood Glucose Meter - Blood Glucose Measurement Units FAQ". 6 July 2011. Archived from the original on 6 July 2011.
  5. 1 2 What are mg/dL and mmol/L? How to convert? Glucose? Cholesterol? Advameg, Inc.
  6. 1 2 Davidson NK, Moreland P (26 July 2011). "Living with diabetes blog". Mayo Clinic. Archived from the original on 14 May 2013.
  7. 1 2 Schuster D (14 August 2008). "What Does 'Post-Meal (Or Post-Prandial) Blood Sugar' Mean And What Does It Tell You?". Ohio State University.
  8. "Indicator Metadata Registry Details". www.who.int. Retrieved 15 March 2024. Converted 100 mg/dL to approximately 5.5 mmol/L using the conversion factor 18.02 g/mol, rather than the 5.6 mmol/L value stated by the WHO.{{cite web}}: CS1 maint: postscript (link)
  9. American Diabetes Association (January 2006). "Standards of medical care in diabetes--2006". Diabetes Care. 29 Suppl 1 (Supplement 1): S4–42. doi: 10.2337/diacare.29.s1.06.s4 . PMID   16373931. S2CID   29740430. Standards of Medical Care – Table 6 and Table 7, Correlation between A1C level and Mean Plasma Glucose Levels on Multiple Testing over 2–3 months
  10. "Screening for Type 2 Diabetes". Clinical Diabetes. 18 (2). 2000.
  11. Danaei, G (2 July 2011). "National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants". The Lancet. 378 (9785): 31–40. doi:10.1016/S0140-6736(11)60679-X. PMID   21705069. S2CID   13951614.
  12. "Blood sugar test: MedlinePlus Medical Encyclopedia". medlineplus.gov. Retrieved 15 March 2024.
  13. USDA National Nutrient Database for Standard Reference, Release 22 (2009)
  14. Eiler H (2004). "Endocrine glands". In Reese WO (ed.). Dukes' Physiology of Domestic Animals (12th ed.). Ithaca, NY: Comstock. pp.  621–69. ISBN   978-0801442384.
  15. Kahn CM, ed. (2005). Merck Veterinary Manual (9th ed.). Whitehouse Station: Merck & Co. ISBN   978-0911910506.
  16. Rice, C. G.; Hall, B. (2007). "Hematologic and biochemical reference intervals for mountain goats (Oreamnos americanus): effects of capture conditions". Northwest Science. 81 (3): 206. doi:10.3955/0029-344X-81.3.206. S2CID   56564674.
  17. Cornell LH, Duffield DS, Joseph BE, Stark B (April 1988). "Hematology and serum chemistry values in the beluga (Delphinapterus leucas)". Journal of Wildlife Diseases. 24 (2): 220–4. doi: 10.7589/0090-3558-24.2.220 . PMID   3373628.
  18. Seal, U. S.; Barton, R.; Mather, L.; Gray, C. W. (1976). "Baseline Laboratory Data for the White Rhinoceros (Ceratotherium simum simum)" (PDF). The Journal of Zoo Animal Medicine. 7 (1): 11–17. JSTOR   20094341.
  19. Boily F, Beaudoin S, Measures LN (January 2006). "Hematology and serum chemistry of harp (Phoca groenlandica) and hooded seals (Cystophora cristata) during the breeding season, in the Gulf of St. Lawrence, Canada". Journal of Wildlife Diseases. 42 (1): 115–32. doi: 10.7589/0090-3558-42.1.115 . PMID   16699154. S2CID   21875860.
  20. Felig, PHILIP; Sherwin, ROBERT S.; Soman, VIJAY; Wahren, JOHN; Hendler, ROSA; Sacca, LUIGI; Eigler, NEIL; Goldberg, DAVID; Walesky, MARY (1 January 1979), Greep, ROY O. (ed.), "Hormonal Interactions in the Regulation of Blood Glucose", Proceedings of the 1978 Laurentian Hormone Conference, Recent Progress in Hormone Research, Boston: Academic Press, vol. 35, pp. 501–532, ISBN   978-0-12-571135-7 , retrieved 9 April 2023
  21. Lehninger A, Nelson D, Cox M (2017). Lehininger Principles of Biochemistry. New York: W.H. Freedom. p. 934. ISBN   9781319117689.
  22. Tortora G (December 2016). Principles Anatomy and Physiology (15 ed.). New York: John Wiley & Sons, Inc. pp. Chapter 18. ISBN   9781119343738.
  23. Lehninger A, Nelson D, Cox M (2017). Lehninger Principles of Biochemistry (7th ed.). New York: W.H.Freeman. p. 930. ISBN   9781319117689.
  24. "Excess sugar linked to cancer". Science Daily.
  25. "Diabetic ketoacidosis - Symptoms and causes". Mayo Clinic. Retrieved 30 January 2018.
  26. "Diabetic emergencies: Warning signs and what to do". www.medicalnewstoday.com. 28 March 2019. Retrieved 23 January 2024.
  27. Australia, Healthdirect (28 November 2023). "Hyperglycaemia (high blood sugar)". www.healthdirect.gov.au. Retrieved 23 January 2024.
  28. Consumer Reports Health Best Buy Drugs. "The Oral Diabetes Drugs: Treating Type 2 Diabetes" (PDF). Best Buy Drugs: 2. Retrieved 18 September 2012.
  29. Fowler, Michael J. (22 June 2007). "Diet and exercise". Clinical Diabetes. 25 (3): 105–110. doi:10.2337/diaclin.25.3.105.
  30. "Steroid medications and diabetes fact sheet – NDSS". www.ndss.com.au.
  31. "Low blood sugar - self-care: MedlinePlus Medical Encyclopedia". medlineplus.gov.
  32. Somogyi M (May 1948). "Studies of arteriovenous differences in blood sugar; effect of alimentary hyperglycemia on the rate of extrahepatic glucose assimilation" (PDF). The Journal of Biological Chemistry. 174 (1): 189–200. doi: 10.1016/S0021-9258(18)57386-5 . PMID   18914074.
  33. Roe J. "Glucose Concentration Difference Between Arterial, Capillary, and Venous Blood". Best Thinking. Archived from the original on 4 December 2014.
  34. Cox DL, Nelson MM (2013). Lehninger principles of biochemistry (6th ed.). New York: W.H. Freeman. p. 950. ISBN   9781429234146.
  35. 1 2 Cox MM, Lehninger AL, Nelson DL (2017). Lehninger Principles of Biochemistry. New York: W.H. Freeman. pp. 248–49. ISBN   9781319117689.
  36. Ginsberg BH (July 2009). "Factors affecting blood glucose monitoring: sources of errors in measurement". Journal of Diabetes Science and Technology. 3 (4): 903–13. doi:10.1177/193229680900300438. PMC   2769960 . PMID   20144340.
  37. Singer, D. E.; Coley, C. M.; Samet, J. H.; Nathan, D. M. (15 January 1989). "Tests of glycemia in diabetes mellitus. Their use in establishing a diagnosis and in treatment". Annals of Internal Medicine. 110 (2): 125–137. doi:10.7326/0003-4819-110-2-125. ISSN   0003-4819. PMID   2642375.
  38. Renschler HE, Weicker H, von Baeyer H (December 1965). "[The upper limit of glucose concentration in the urine of healthy subjects]". Deutsche Medizinische Wochenschrift. 90 (53): 2349–53. PMID   5851934.
  39. Tankasala, D; Linnes, JC (November 2019). "Noninvasive glucose detection in exhaled breath condensate". Translational Research. 213: 1–22. doi:10.1016/j.trsl.2019.05.006. PMC   6783357 . PMID   31194942.
  40. "Neocuproine MSDS". hazard.com. Archived from the original on 10 July 2012.{{cite web}}: CS1 maint: unfit URL (link)

Further reading