Campylocephalus

Last updated

Campylocephalus
Temporal range: Carboniferous-Late Permian, 326.4–251.9  Ma
Campylocephalus oculatus.jpg
Drawing of the carapace of C. oculatus by its original descriptor, Stepan S. Kutorga (1838)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Chelicerata
Order: Eurypterida
Superfamily: Mycteropoidea
Family: Hibbertopteridae
Genus: Campylocephalus
Eichwald, 1860
Type species
Campylocephalus oculatus
(Kutorga, 1838)
Species
  • C. oculatus(Kutorga, 1838)
  • C. permianus(Ponomarenko, 1985)
  • †?C. salmi(Štúr, 1877)
Synonyms
  • EidotheaScouler, 1831, preoccupied
  • CampylognathusDiener, 1924, preoccupied

Campylocephalus is a genus of eurypterid, a group of extinct aquatic arthropods. Fossils of Campylocephalus have been discovered in deposits ranging from the Carboniferous period in the Czech Republic (the species C. salmi) to the Permian period of Russia (species C. oculatus and C. permianus). The generic name is composed of the Greek words καμπύλος (kampýlos), meaning "curved", and κεφαλή (kephalē), meaning "head".

Contents

It was a member of the hibbertopterid family of eurypterids and probably looked much the same as the other members of the family, Hibbertopterus and Vernonopterus , in that it was a large, broad and heavy animal quite different from the famous swimming eurypterids (such as Pterygotus and Eurypterus ) which had been common during earlier periods. Like all other stylonurine eurypterids, Campylocephalus completely lacked swimming paddles.

Hibbertopterids such as Campylocephalus were, as many other families within the stylonurine suborder, sweep-feeders. Sweep-feeding food strategies involve specialized appendages with blades that could be used by the animals to rake through the substrate of their living environments in search for small prey items.

The species C. permianus, known from deposits of Late Permian age in Russia, is the only species of Campylocephalus preserved well enough to allow for size estimates, published estimates putting its size at potentially 1.4 metres (4.6 feet) in length. This species was among the last known surviving eurypterid, living just before or during the Permian–Triassic extinction event 251.9 million years ago. Before the extinction event, eurypterids had been declining in numbers and diversity for millions of years; Campylocephalus had been the only known genus of living eurypterids for more than 20 million years since the extinction of the related genus Hastimima .

Description

Restoration of C. oculatus. Missing elements are based on closely related hibbertopterids. CampylocephalusDB117.jpg
Restoration of C. oculatus. Missing elements are based on closely related hibbertopterids.

Classified as a member of the hibbertopterid family of eurypterids, Campylocephalus was overall similar to the other members of the family. It was a large, broad and heavy creature quite unlike most earlier and more famous swimming eurypterids such as Pterygotus and Eurypterus . As a member of the stylonurine suborder, Campylocephalus completely lacked swimming paddles. [1] [2]

Several distinguishing features separate Campylocephalus from other genera in its family, in particular from the closely related Hibbertopterus . Campylocephalus had a subelliptical (almost elliptical) prosoma (head), which was subsemicircular (almost shaped like a semicircle) and strongly convex, being at its broadest in the midsection. The compound eyes of Campylocephalus were laterally placed (on the sides of the head) and were separated from each other by inflated lobes in the middle. Behind the eyes on the carapace (the exoskeleton segment covering the head) there were some further lobe-like structures referred to as palpebral lobes. [1] [2]

As with the prosoma, the tergites (segments on the upper side of the body) of the abdomen were convex in shape, and possessed articular processes (projecting structures that helped the segments to fit together). The appendages (limbs) of Campylocephalus are only very rarely preserved and are as such almost completely unknown. [1] [2]

Due to just how incomplete the fossil remains referred to Campylocephalus are, determining its size is difficult and as of yet, no formal published size estimates exist for either the type species C. oculatus or the species C. salmi. The sole known fossil remains of C. permianus, a massive incomplete carapace, suggests a very large eurypterid, potentially reaching lengths of 1.4 metres (4.6 feet). [3]

In C. oculatus, the eyes were semilunar in shape (almost moon-shaped) and placed near the middle of the carapace, with small ocelli (light-sensitive simple eyes) between them. Its carapace had small irregular prominences, a rounded anterior edge and an indented posterior edge. The thoracic segments (segments of the thorax) of the species were straight and narrow. [4] The eyes of C. salmi were similar, being placed very close together. [5] The eyes were also a distinguishing feature in C. permianus, where they were placed more posteriorly than in the other species. [1]

History of research

Drawings of fragmentary fossil carapaces of C. salmi, then referred to as Eurypterus salmi, by Dionys Stur (1877). Campylocephalus salmi.png
Drawings of fragmentary fossil carapaces of C. salmi, then referred to as Eurypterus salmi, by Dionýs Štúr (1877).

Fossils today recognized as belonging to Campylocephalus were first described in 1838 as belonging to a species of the genus Limulus , the same genus as the modern atlantic horseshoe crab, by Russian paleontologist Stepan S. Kutorga. Citing similarities with members of the modern genus in the appearance and anatomy of the somewhat incomplete fossil, Kutorga named it Limulus oculatus. [6]

Scottish naturalist John Scouler described the genus Eidothea in 1831 based on a single fossil prosoma from Scotland, but did not grant it any specific name. Creating a genus with no species goes against orthodox zoological nomenclature, specifically conflicting for instance with Opinion 65 of the International Commission on Zoological Nomenclature; [7]

If an author designates a certain species as genotype, it is to be assumed that his determination of the species is correct; if a case presents itself in which it appears that an author has based his genus on certain definite specimens, rather than upon a species, it would be well to submit the case, with full details, to the Commission. At the present moment, it is difficult to lay down a general rule.

Opinions and declarations rendered by the International Commission on Zoological Nomenclature (1958). [8]

Any taxonomical difficulties implied with Scouler's designation were easily avoided, however, by the discovery that the genus name was preoccupied by a genus of molluscs described in 1826. Nevertheless, the name Eidothea would be associated with the Scottish eurypterid species Eurypterus scouleri, with a near identical prosoma, described in 1836. [7]

In 1860 French paleontologist Edouard D'Eichwald recognized that the carapace and thoracic segments which had been described by Kutorga were quite distinct from Limulus, and thus a new genus was named to contain Limulus oculatus, dubbed by D'Eichwald as Campylocephalus. This generic name is composed of the Greek words καμπύλος (kampýlos), meaning "curved", and κεφαλή (kephalē), meaning "head". [4]

The second species of Campylocephalus to be described, C. salmi, was named as a species of the quite distantly related Eurypterus by the Slovak geologist and paleontologist Dionýs Štúr in 1877. Štúr's description was based on two incomplete fossil carapaces. The first fragmentary carapace only preserved the lower part of the head, ending in two pointed and concave arches. The eyes of this carapace were close together, in the middle of the carapace, and on a triangularly shaped elevated portion similar to some specimens of the related Hibbertopterus scouleri. In the second carapace specimen, the carapace began to stretch forward above the eyes. Both of these fossils also possessed protuberances of different sizes across the exoskeleton, showing vague forms and shapes not seen in other specimens of the genus. [5]

Reconstruction of the closely related Hibbertopterus scouleri, once considered to be a species of Campylocephalus. Hibbertopterus scouleri.jpg
Reconstruction of the closely related Hibbertopterus scouleri , once considered to be a species of Campylocephalus.

Fossils of Eurypterus scouleri were compared to the carapace described by Kutorga in 1838 by Norwegian paleontologist Leif Størmer in 1951, who concluded that the two were clearly congeneric. [9] At this point, D'Eichwald had already recognized the fossils designated as "Eidothea" by Scouler as representatives of Campylocephalus. [7] As such, E. scouleri was classified as Campylocephalus scouleri. Though the legs of Campylocephalus were still unknown at the time, even with the addition of the Scottish species, any grouping with other genera would have to be made using features of the carapace. Comparing the ornamentation of the carapace to other eurypterids, Størmer found it to be similar to the genus Tarsopterella (where the legs were also more or less unknown) which allowed Campylocephalus to be firmly placed within the family Stylonuridae (which would later be raised to become the suborder Stylonurina, not to be confused with the presently recognized eurypterid family Stylonuridae). [9]

English paleontologist Charles D. Waterston was the first to suggest that C. scouleri perhaps shouldn't be considered as congeneric with Campylocephalus, raising the issue in a 1958 paper. He posited that though the dorsal anatomy of the prosoma was quite similar between C. scouleri and C. oculatus, the designated type species, multiple well-preserved fossils had allowed for detailed research into the ventral anatomy and appendages of C. scouleri since the two had been placed in the same genus, whilst the ventral anatomy and appendages of C. oculatus remained unknown. [7] A year later, in 1959, American paleontologist Erik Norman Kjellesvig-Waering created the new genus Hibbertopterus to contain C. scouleri (now Hibbertopterus scouleri) and placed both genera within the family Hibbertopteridae. [10]

Described by Russian paleontologist Alexey G. Ponomarenko in 1985, C. permianus was originally named as a species of Hibbertopterus. The only known specimen of this species is the holotype, PIN N1209/2, an incomplete carapace, but Ponomarenko could list several features that distinguished it from other species referred to Hibbertopterus. Among these were most prominently the posterior position of the lateral eyes and said eyes not being circular in shape. In 2012, American paleontologist James C. Lamsdell could demonstrate that these unique features were actually diagnostic features of the genus Campylocephalus and thus reclassified it as its current combination. Though Ponomarenko had mentioned several features that also distinguished C. permianus from the then currently recognized species of Campylocephalus, including a different carapace shape and some thickening of the exoskeleton around the eyes, Lamsdell determined that these distinctions were not valid. In the view of Lamsdell, specimens of the type species C. oculatus are not well preserved enough to determine the precise structure of the eyes and because fossils of its carapace are either flattened or incomplete, its shape can not be ascertained with complete accuracy. [1]

Classification

Campylocephalus is classified as part of the family Hibbertopteridae, a family of eurypterids within the superfamily Mycteropoidea, alongside the genera Hibbertopterus and Vernonopterus . The genus contains three species; C. oculatus and C. permianus from the Permian of Russia and C. salmi from the Carboniferous of the Czech Republic. The classification of C. salmi is considered somewhat uncertain, [10] with C. salmi being fragmentary (as all other species of the genus) and possessing some unique features (e.g. the differently sized protuberances around the carapace). [5]

The hibbertopterids are united as a group by being large mycteropoids with broad prosomas, a hastate (e.g. shaped like a gladius , a Roman sword) telson (which was the posteriormost division of the body) with paired keels on the ventral side, ornamentation consisting of scales or other similar structures on the exoskeleton, the fourth pair of appendages possessing spines, the more posterior tergites of the abdomen possessing tongue-shaped scales near their edges and there being lobes positioned posterolaterally (posteriorly on both sides) on the prosoma. [11]

The features of Campylocephalus and Vernonopterus makes it clear that both genera represent hibbertopterid eurypterids, but the incomplete nature of all fossil specimens referred to them make any further study of the precise phylogenetic relationships within the Hibbertopteridae difficult. Both genera could even represent synonyms of Hibbertopterus itself, though the highly incomplete nature of their remains again makes that hypothesis impossible to confirm. [11]

The cladogram below is adapted from Lamsdell (2012), [1] collapsed to only show the superfamily Mycteropoidea.

Mycteropoidea
Drepanopteridae

Drepanopterus pentlandicus

Drepanopterus abonensis

Drepanopterus odontospathus

Mycteroptidae

Woodwardopterus scabrosus

Mycterops mathieui

Hastimima whitei

Megarachne servinei

Hibbertopteridae

Campylocephalus oculatus

Hibbertopterus scouleri

Hibbertopterus wittebergensis

Paleoecology

The estimated size of C. permianus compared to a human Campylocephalus Scale.svg
The estimated size of C. permianus compared to a human

Hibbertopterids such as Campylocephalus were sweep-feeders, having modified spines on their forward-facing prosomal appendages that allowed them to rake through the substrate of their living environments. Though sweep-feeding was used as a strategy by many genera within the Stylonurina, it was most developed within the hibbertopterids, which possessed blades on the second, third and fourth pair of appendages. Some species of the closely related Hibbertopterus had specialized comb-like rachis (shafts) that were able to entrap small prey and other organic food particles. [11]

Though they would have been slow owing to their massive size and robust form, studies on Hibbertopterus footprints discovered in Scotland have demonstrated that hibbertopterids would have been able to walk on land for at least short periods of time. The tracks discovered indicate that they would have utilized a lumbering, jerking and dragging movement and that the keeled belly and the telson left a central groove behind. [12] Some studies suggest that eurypterids possessed a dual respiratory system, which would have allowed for this kind of occasional terrestrial movement. [13]

C. salmi is known from the Ostrava Formation of the Czech Republic and would have lived during the Arnsbergian age (326.4–318.1 million years ago) of the Carboniferous period. The deposits were the eurypterid fossils were found are lacustrine, meaning that they formed on the bottom of an ancient lake. [14] Spiders of the genus Eophrynus , part of the extinct arachnid order Trigonotarbida, are known from the same location and age, [14] and numerous anthozoans (the group that contains animals such as corals and sea anemones) are known from the same age within the Ostrava Formation. [15]

It is difficult to make any statements on the paleoecology of the type species, C. oculatus, as the precise location and dating of the fossil specimen remains somewhat unclear. Most accounts place the fossil as having been found at a location named Dourasovo in Russia [10] [13] and being from the Guadalupian epoch (272.3–259.8 million years ago) of the Permian period. [13]

The species of C. permianus is one of the latest known surviving eurypterid species. The sole fossil representing the species was discovered in the Komi Autonomous Soviet Socialist Republic of the Soviet Union (the modern Komi Republic of Russia) in deposits of approximately the age of the Permian–Triassic extinction event 251.9 million years ago. [13] In the Permian, Komi would have been a coastal region of the supercontinent Pangaea. Though no other fossils of the exact same age have been reported, other Permian-age life known from the region include bryozoans [16] and bivalves. [17]

By the beginning of the Permian, the eurypterids were already in decline relative to what their numbers and diversity had once been. The group was one of many heavily affected by the Late Devonian extinction, which rendered all but a single genus of eurypterine (those with swimming paddles) eurypterids extinct ( Adelophthalmus ). Of the 16 eurypterid families that had lived during the beginning of the Devonian period, three families survived and persisted into the Carboniferous period, all of which contained only non-marine species. [18] By the Permian, only four genera were still alive; Adelophthalmus (a adelophthalmid), Hastimima and Woodwardopterus (mycteroptids), and Campylocephalus itself. Both Adelophthalmus and Hastimima went extinct during the Early Permian, which left Campylocephalus as one of only two living genera of eurypterids for more than 20 million years until its own extinction in the Permian–Triassic extinction event. [13] [19] [20] Woodwardopterus also went extinct around this time. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Eurypterid</span> Order of arthropods (fossil)

Eurypterids, often informally called sea scorpions, are a group of extinct arthropods that form the order Eurypterida. The earliest known eurypterids date to the Darriwilian stage of the Ordovician period 467.3 million years ago. The group is likely to have appeared first either during the Early Ordovician or Late Cambrian period. With approximately 250 species, the Eurypterida is the most diverse Paleozoic chelicerate order. Following their appearance during the Ordovician, eurypterids became major components of marine faunas during the Silurian, from which the majority of eurypterid species have been described. The Silurian genus Eurypterus accounts for more than 90% of all known eurypterid specimens. Though the group continued to diversify during the subsequent Devonian period, the eurypterids were heavily affected by the Late Devonian extinction event. They declined in numbers and diversity until becoming extinct during the Permian–Triassic extinction event 251.9 million years ago.

<i>Eurypterus</i> Extinct genus of sea scorpions

Eurypterus is an extinct genus of eurypterid, a group of organisms commonly called "sea scorpions". The genus lived during the Silurian period, from around 432 to 418 million years ago. Eurypterus is by far the most well-studied and well-known eurypterid. Eurypterus fossil specimens probably represent more than 95% of all known eurypterid specimens.

<span class="mw-page-title-main">Stylonurina</span> Extinct suborder of arthropods

Stylonurina is one of two suborders of eurypterids, a group of extinct arthropods commonly known as "sea scorpions". Members of the suborder are collectively and informally known as "stylonurine eurypterids" or "stylonurines". They are known from deposits primarily in Europe and North America, but also in Siberia.

<i>Hibbertopterus</i> Extinct genus of arthropods

Hibbertopterus is a genus of eurypterid, a group of extinct aquatic arthropods. Fossils of Hibbertopterus have been discovered in deposits ranging from the Devonian period in Belgium, Scotland and the United States to the Carboniferous period in Scotland, Ireland, the Czech Republic and South Africa. The type species, H. scouleri, was first named as a species of the significantly different Eurypterus by Samuel Hibbert in 1836. The generic name Hibbertopterus, coined more than a century later, combines his name and the Greek word πτερόν (pteron) meaning "wing".

<i>Megarachne</i> Extinct genus of eurypterid

Megarachne is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Megarachne have been discovered in deposits of Late Carboniferous age, from the Gzhelian stage, in the Bajo de Véliz Formation of San Luis, Argentina. The fossils of the single and type species M. servinei have been recovered from deposits that had once been a freshwater environment. The generic name, composed of the Ancient Greek μέγας (megas) meaning "great" and Ancient Greek ἀράχνη (arachne) meaning "spider", translates to "great spider", because the fossil was misidentified as a large prehistoric spider.

<i>Carcinosoma</i> Extinct genus of arthropods

Carcinosoma is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Carcinosoma are restricted to deposits of late Silurian age. Classified as part of the family Carcinosomatidae, which the genus lends its name to, Carcinosoma contains seven species from North America and Great Britain.

<i>Alkenopterus</i> Extinct genus of arthropods

Alkenopterus is a genus of prehistoric eurypterid classified as part of the family Onychopterellidae. The genus contains two species, A. brevitelson and A. burglahrensis, both from the Devonian of Germany.

<i>Onychopterella</i> Extinct genus of arthropods

Onychopterella is a genus of predatory eurypterid, an extinct group of aquatic arthropods. Fossils of Onychopterella have been discovered in deposits from the Late Ordovician to the Late Silurian. The genus contains three species: O. kokomoensis, the type species, from the Early Pridoli epoch of Indiana; O. pumilus, from the Early Llandovery epoch of Illinois, both from the United States; and O. augusti, from the Late Hirnantian to Early Rhuddanian stages of South Africa.

<i>Tylopterella</i> Extinct genus of arthropods

Tylopterella is a genus of eurypterid, a group of extinct aquatic arthropods. Only one fossil of the single and type species, T. boylei, has been discovered in deposits of the Late Silurian period in Elora, Canada. The name of the genus is composed by the Ancient Greek words τύλη, meaning "knot", and πτερόν, meaning "wing". The species name boylei honors David Boyle, who discovered the specimen of Tylopterella.

<i>Parahughmilleria</i> Extinct genus of arthropods

Parahughmilleria is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Parahughmilleria have been discovered in deposits of the Devonian and Silurian age in the United States, Canada, Russia, Germany, Luxembourg and Great Britain, and have been referred to several different species. The first fossils of Parahughmilleria, discovered in the Shawangunk Mountains in 1907, were initially assigned to Eurypterus. It would not be until 54 years later when Parahughmilleria would be described.

<i>Adelophthalmus</i> Genus of arthropods (fossil)

Adelophthalmus is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Adelophthalmus have been discovered in deposits ranging in age from the Early Devonian to the Early Permian, which makes it the longest lived of all known eurypterid genera, with a total temporal range of over 120 million years. Adelopththalmus was the final genus of the Eurypterina suborder of eurypterids and consisted the only known genus of swimming eurypterids from the Middle Devonian until its extinction during the Permian, after which the few surviving eurypterids were all walking forms of the suborder Stylonurina.

<i>Unionopterus</i> Genus of eurypterid

Unionopterus is a genus of eurypterid, an extinct group of aquatic arthropods commonly known as "sea scorpions". Fossils have been registered from the Early Carboniferous period. The genus contains only one species, U. anastasiae, recovered from deposits of Tournaisian to Viséan stages in Kazakhstan. Known from one single specimen which was described in a publication of Russian language with poor illustrations, Unionopterus' affinities are extremely poorly known.

<span class="mw-page-title-main">Pterygotioidea</span> Extinct superfamily of eurypterids

Pterygotioidea is a superfamily of eurypterids, an extinct group of aquatic arthropods. Pterygotioids were the most derived members of the infraorder Diploperculata and the sister group of the adelophthalmoid eurypterids. The group includes the basal and small hughmilleriids, the larger and specialized slimonids and the famous pterygotids which were equipped with robust and powerful cheliceral claws.

<span class="mw-page-title-main">Hibbertopteridae</span> Extinct family of arthropods

Hibbertopteridae is a family of eurypterids, an extinct group of aquatic arthropods. They were members of the superfamily Mycteropoidea. Hibbertopterids were large, broad and heavy animals unlike virtually every other group of eurypterids, which are commonly streamlined and lightweight. Their bizarre morphology is so unusual that they in the past have been thought to represent an entirely distinct order of chelicerates. Fossils of the family first appear in deposits of Middle Devonian age and the last known fossils representing hibbertopterids are known from deposits of Late Permian age. The hibbertopterids represent the last known living eurypterids, going extinct during the Permian–Triassic extinction event or shortly before.

<span class="mw-page-title-main">Adelophthalmidae</span> Family of eurypterids, an extinct group of aquatic arthropods

Adelophthalmidae is a family of eurypterids, an extinct group of aquatic arthropods. Adelophthalmidae is the only family classified as part of the superfamily Adelophthalmoidea, which in turn is classified within the infraorder Diploperculata in the suborder Eurypterina.

<span class="mw-page-title-main">Mycteropoidea</span> Extinct superfamily of arthropods

Mycteropoidea is an extinct superfamily of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". It is one of four superfamilies classified as part of the suborder Stylonurina. Mycteropoids have been recovered from Europe, Russia, South America and South Africa. Mycteropoid specimens are often fragmentary, making it difficult to establish relationships between the included taxa. Only two mycteropoid taxa are known from reasonable complete remains, Hibbertopterus scouleri and H. wittebergensis.

<i>Vernonopterus</i> Extinct genus of arthropods

Vernonopterus is a genus of eurypterid, a group of extinct aquatic arthropods. Fossils of Vernonopterus have been discovered in deposits of the Carboniferous period in Scotland. The name of the genus derives from the location where the only known fossil has been discovered, Mount Vernon near Airdrie in Lanarkshire, Scotland. A single species of Vernonopterus is recognized, V. minutisculptus, based on fragmentary fossilized tergites, segments on the upper side of the abdomen. The species name minutisculptus refers to the ornamentation of scales that covers the entirety of the preserved parts of the eurypterid.

<i>Eusarcana</i> Extinct genus of sea scorpions

Eusarcana is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Eusarcana have been discovered in deposits ranging in age from the Early Silurian to the Early Devonian. Classified as part of the family Carcinosomatidae, the genus contains three species, E. acrocephalus, E. obesus and E. scorpionis, from the Silurian-Devonian of Scotland, the Czech Republic and the United States respectively.

<i>Eysyslopterus</i> Extinct genus of arthropods

Eysyslopterus is a genus of eurypterid, an extinct group of aquatic arthropods. Eysyslopterus is classified as part of the family Adelophthalmidae, the only clade within the derived ("advanced") Adelophthalmoidea superfamily of eurypterids. One fossil of the single and type species, E. patteni, has been discovered in deposits of the Late Silurian period in Saaremaa, Estonia. The genus is named after Eysysla, the Viking name for Saaremaa, and opterus, a traditional suffix for the eurypterid genera, meaning "wing". The species name honors William Patten, an American biologist and zoologist who discovered the only known fossil of Eysyslopterus.

<span class="mw-page-title-main">Timeline of eurypterid research</span>

This timeline of eurypterid research is a chronologically ordered list of important fossil discoveries, controversies of interpretation, and taxonomic revisions of eurypterids, a group of extinct aquatic arthropods closely related to modern arachnids and horseshoe crabs that lived during the Paleozoic Era.

References

  1. 1 2 3 4 5 6 Lamsdell, James (2012). "Redescription of Drepanopterus pentlandicus Laurie, 1892, the earliest known mycteropoid (Chelicerata: Eurypterida) from the early Silurian (Llandovery) of the Pentland Hills, Scotland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 103: 77–103. doi:10.1017/S1755691012000072. S2CID   84151264.
  2. 1 2 3 Størmer, Leif (1955). "Merostomata". Part P Arthropoda 2, Chelicerata. Treatise on Invertebrate Paleontology. p. 39.
  3. Lamsdell, James C.; Braddy, Simon J. (2009). "Cope's rule and Romer's theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates". Biology Letters . 6 (2): 265–269. doi:10.1098/rsbl.2009.0700. ISSN   1744-9561. PMC   2865068 . PMID   19828493. Supplemental material.
  4. 1 2 D'Eichwald, Edouard (1860). "2". Lethaea rossica ou Paléontologie de la Russie. Vol. 1. p. 1360.
  5. 1 2 3 Štúr, Dionýs (1877). Die Culmflora der Ostrauer und Waldenburger Schichten. Vol. 8. Hölder. pp. 449–450.
  6. Kutorga, S. (Stepan) (1838). Beitrag zur Kenntniss der organischen Ueberreste des Kupfersandsteins am westlichen Abhange des Urals. Museum Victoria. Mineralogischen Gesellschaft.
  7. 1 2 3 4 Waterston, Charles D. (1958). "XII.—The Scottish Carboniferous Eurypterida*". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 63 (2): 265–288. doi:10.1017/S0080456800009492. ISSN   2053-5945. S2CID   130625350.
  8. International Commission on Zoological Nomenclature.; Nomenclature, International Commission on Zoological (1958). Opinions and declarations rendered by the International Commission on Zoological Nomenclature. Vol. v. 1B (1958). London: Printed by order of the International Trust for Zoological Nomenclature.
  9. 1 2 Størmer, Leif (1951). "A New Eurypterid from the Ordovician of Montgomeryshire, Wales". Geological Magazine. 88 (6): 409–422. Bibcode:1951GeoM...88..409S. doi:10.1017/S001675680006996X. ISSN   1469-5081. S2CID   129426407.
  10. 1 2 3 Dunlop, J. A., Penney, D. & Jekel, D. 2015. A summary list of fossil spiders and their relatives. In World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch , version 16.0 http://www.wsc.nmbe.ch/resources/fossils/Fossils16.0.pdf (PDF).
  11. 1 2 3 James C. Lamsdell, Simon J. Braddy & O. Erik Tetlie (2010). "The systematics and phylogeny of the Stylonurina (Arthropoda: Chelicerata: Eurypterida)". Journal of Systematic Palaeontology . 8 (1): 49–61. doi:10.1080/14772011003603564. S2CID   85398946.
  12. "Giant Water Scorpion Walked on Land". Live Science. Retrieved 2017-12-28.
  13. 1 2 3 4 5 Tetlie OE (2007). "Distribution and dispersal history of Eurypterida (Chelicerata)" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology . 252 (3–4): 557–574. doi:10.1016/j.palaeo.2007.05.011. Archived from the original (PDF) on 2011-07-18.
  14. 1 2 "Fossilworks - Hermenegilde Shaft, XII Jaklowetzer seam, Ostrava (Carboniferous of Czech Republic)". fossilworks.org. Retrieved 17 December 2021.
  15. "Fossilworks - Sosnica Mine, Gliwice, Upper Roemer Bed (Carboniferous of Poland)". fossilworks.org. Retrieved 17 December 2021.
  16. "Fossilworks - Piles Well, Komi Region (Permian of Russian Federation)". fossilworks.org. Retrieved 17 December 2021.
  17. "Fossilworks - Vym' River, Opposite mouth of Koin River, Komi Region (Permian of Russian Federation)". fossilworks.org. Retrieved 17 December 2021.
  18. Hallam, Anthony; Wignall, Paul B. (1997). Mass Extinctions and Their Aftermath. Oxford University Press. ISBN   978-0198549161. p. 70
  19. White, David (1927). "The Flora of the Hermit Shale in the Grand Canyon, Arizona". Proceedings of the National Academy of Sciences of the United States of America. 13 (8): 574–575. Bibcode:1927PNAS...13..574W. doi: 10.1073/pnas.13.8.574 . ISSN   0027-8424. PMC   1085121 . PMID   16587225.
  20. Kues, Barry S.; Kietzke, Kenneth K. (1981). "A Large Assemblage of a New Eurypterid from the Red Tanks Member, Madera Formation (Late Pennsylvanian-Early Permian) of New Mexico". Journal of Paleontology. 55 (4): 709–729. ISSN   0022-3360. JSTOR   1304420.
  21. Poschmann, Markus J.; Rozefelds, Andrew (2021). "The last eurypterid – a southern high-latitude record of sweep-feeding sea scorpion from Australia constrains the timing of their extinction". Historical Biology. 33 (12): 121–138. doi:10.1080/08912963.2021.1998033. S2CID   252467508.