Capsaspora

Last updated

Capsaspora
Capsaspora owczarzaki.jpeg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Class: Filasterea
Order: Ministeriida
Family: Capsasporidae
Cavalier-Smith, 2008 [1]
Genus: Capsaspora
Hertel, Bayne & Loker 2002 [2]
Species:
C. owczarzaki
Binomial name
Capsaspora owczarzaki
Hertel, Bayne & Loker 2002

Capsaspora is a monotypic genus containing the single species Capsaspora owczarzaki. C. owczarzaki is a single-celled eukaryote that occupies a key phylogenetic position in our understanding of the origin of animal multicellularity, as one of the closest unicellular relatives to animals. It is, together with Ministeria vibrans, a member of the Filasterea clade (see “Taxonomy” below). This amoeboid protist has been pivotal to unravel the nature of the unicellular ancestor of animals, which has been proved to be much more complex than previously thought. [3] [4] [5]

Contents

Description

C. owczarzaki was originally described as an amoeba-like “symbiont” of the fresh-water snail Biomphalaria glabrata . [6] [7] The amoebae were obtained from the haemolymph of snails originally sampled in Puerto Rico.

C. owczarzaki’s life cycle comprises 3 different stages with three different cell types, which was reported only recently.[ when? ] Under culture conditions, C. owczarzaki’s filopodial cells crawl attached to the substrate, with active replication until the end of the exponential growth phase. Then, cells start to detach, retracting the branching filopodia and encysting. During this cystic phase, division is stopped. Alternatively, amoebae can actively aggregate to each other by unknown factors, forming a multicellular, aggregative structure and secreting an unstructured extracellular material that seems to prevent direct cell-cell contact.

C. owczarzaki cells, in the filopodial stage, were described as 3 to 5 μm amoebas with a nucleus ⅓ - ½ of the diameter of the cell (containing a central nucleolus), long branched filopodia, mitochondria with flattened cristae, numerous phagosomes, lipid vacuoles, glycogen granules and a Golgi apparatus. [6] [7] Cystic cells measure 4 to 5 μm with a double wall: the outer thin, irregular and loosely attached; and the inner thicker, smooth. [8]

Taxonomy

C. owczarzaki is together with Ministeria vibrans a member of the Filasterea clade. [9] [1] This group is the sister group to a clade comprising Metazoa and Choanoflagellata, which together form the Filozoa [9] [1] [10] (See Figure 1). C. owczarzaki was originally described as nucleariids. [7] However, later molecular ribosomal phylogenies placed C. owczarzaki somewhere closer to animals than the rest of nucleariids. [11] [12] [13] Finally, a multi-gene phylogenetic analysis with several opisthokont taxa clearly showed that C. owczarzaki is not a nucleariid, but part of the Holozoa. [14] [15] This was later on corroborated by phylogenomic analyses, [16] [17] one of which [17] situated it as sister-group to Ministeria forming the Filasterea clade, which is the sister-group to Choanoflagellatea and Metazoa. [18] [19]

Figure 1: Capsaspora's phylogenetic tree Phylogenetic tree.jpg
Figure 1: Capsaspora's phylogenetic tree

Applications

C. owczarzaki is of scientific interest because it is one of the closest unicellular relatives of multicellular animals. Its genome has recently been sequenced and shows several genes involved in metazoan multicellularity, such as integrins, [20] metazoan transcription factors, [21] and protein tyrosine kinases. [22] Moreover, it has relevance to human health because its host, the snail Biomphalaria glabrata , is also the intermediate host of the digenean flatworm Schistosoma mansoni , the causative agent of widespread schistosomiasis in humans. C. owczarzaki not only parasitizes the intermediate host of S. mansoni but also attacks and kills the sporocysts of the flatworm living inside the snail. [23]

Related Research Articles

<span class="mw-page-title-main">Nucleariida</span> Order of amoebae

Nucleariida is a group of amoebae with filose pseudopods, known mostly from soils and freshwater. They are distinguished from the superficially similar vampyrellids mainly by having mitochondria with discoid cristae, in the absence of superficial granules, and in the way they consume food.

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

<span class="mw-page-title-main">Rhizaria</span> Infrakingdom of protists

The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeletons, which are in different clades within Rhizaria made out of opal, celestite, or calcite. Certain species can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.

<span class="mw-page-title-main">Apusozoa</span> Phylum of micro-organisms

The Apusozoa are a paraphyletic phylum of flagellate eukaryotes. They are usually around 5–20 μm in size, and occur in soils and aquatic habitats, where they feed on bacteria. They are grouped together based on the presence of an organic shell or theca under the dorsal surface of the cell.

The Urmetazoan is the hypothetical last common ancestor of all animals, or metazoans. It is universally accepted to be a multicellular heterotroph — with the novelties of a germline and oogamy, an extracellular matrix (ECM) and basement membrane, cell-cell and cell-ECM adhesions and signaling pathways, collagen IV and fibrillar collagen, different cell types, spatial regulation and a complex developmental plan, and relegated unicellular stages.

<i>Ministeria vibrans</i> Species of amoeba

Ministeria vibrans is a bacterivorous amoeba with filopodia that was originally described to be suspended by a flagellum-like stalk attached to the substrate. Molecular and experimental work later on demonstrated the stalk is indeed a flagellar apparatus.

<i>Breviata</i> Genus of flagellated amoebae

Breviata anathema is a single-celled flagellate amoeboid eukaryote, previously studied under the name Mastigamoeba invertens. The cell lacks mitochondria, much like the pelobionts to which the species was previously assigned, but has remnant mitochondrial genes, and possesses an organelle believed to be a modified anaerobic mitochondrion, similar to the mitosomes and hydrogenosomes found in other eukaryotes that live in low-oxygen environments.

<span class="mw-page-title-main">Filasterea</span> Basal Filozoan clade

Filasterea is a proposed basal Filozoan clade of single-celled ameboid eukaryotes that includes Ministeria and Capsaspora. It is a sister clade to the Choanozoa in which the Choanoflagellatea and Animals appeared, originally proposed by Shalchian-Tabrizi et al. in 2008, based on a phylogenomic analysis with dozens of genes. Filasterea was found to be the sister-group to the clade composed of Metazoa and Choanoflagellata within the Opisthokonta, a finding that has been further corroborated with additional, more taxon-rich, phylogenetic analyses.

<span class="mw-page-title-main">Holozoa</span> Clade containing animals and some protists

Holozoa is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species. It consists of various subgroups, namely Metazoa and the protists Choanoflagellata, Filasterea, Pluriformea and Ichthyosporea. Along with fungi and some other groups, Holozoa is part of the Opisthokonta, a supergroup of eukaryotes. Choanofila was previously used as the name for a group similar in composition to Holozoa, but its usage is discouraged now because it excludes animals and is therefore paraphyletic.

<span class="mw-page-title-main">Apusomonadidae</span> Group of microorganisms with two flagella

The apusomonads are a group of protozoan zooflagellates that glide on surfaces, and mostly consume prokaryotes. They are of particular evolutionary interest because they appear to be the sister group to the Opisthokonts, the clade that includes both animals and fungi. Together with the Breviatea, these form the Obazoa clade.

<span class="mw-page-title-main">Filozoa</span> Monophyletic grouping within the Opisthokonta

The Filozoa are a monophyletic grouping within the Opisthokonta. They include animals and their nearest unicellular relatives.

<span class="mw-page-title-main">Holomycota</span> Clade containing fungi and some protists

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

<span class="mw-page-title-main">Choanozoa</span> Clade of opisthokont eukaryotes consisting of the choanoflagellates and the animals

Choanozoa is a clade of opisthokont eukaryotes consisting of the choanoflagellates (Choanoflagellatea) and the animals. The sister-group relationship between the choanoflagellates and animals has important implications for the origin of the animals. The clade was identified in 2015 by Graham Budd and Sören Jensen, who used the name Apoikozoa. The 2018 revision of the classification first proposed by the International Society of Protistologists in 2012 recommends the use of the name Choanozoa.

<i>Creolimax fragrantissima</i> Species of protist

Creolimax fragrantissima is a single-celled protist that occupies a key phylogenetic position to understand the origin of animals. It was isolated from the digestive tract of some marine invertebrates, mainly from the peanut worm, collected from the Northeast Pacific.

<i>Sphaeroforma arctica</i> Species of protist

Sphaeroforma arctica, is a unicellular eukaryote with a pivotal position in the tree of life. It was first isolated from the arctic marine amphipod Gammarus setosus. Like other Ichthyosporeans such as Creolimax and Abeoforma, Sphaeroforma arctica are spherical cells characterized with their capacity to grow into multi-nucleated coenocytes. However, a unique feature of S. arctica, is that no obvious budding, hyphal, amoeboid, sporal or flagellated growth stages have been observed in laboratory growth conditions.

Mantamonads are a group of free-living heterotrophic flagellates that move primarily by gliding on surfaces. They are classified as one genus Mantamonas in the monotypic family Mantamonadidae, order Mantamonadida and class Glissodiscea. Previously, they were classified in Apusozoa as sister of the Apusmonadida on the basis of rRNA analyses. However, mantamonads are currently placed in CRuMs on the basis of phylogenomic analyses that identify their closest relatives as the Diphylleida and Rigifilida.

<i>Parvularia atlantis</i> Species of amoeba

Parvularia atlantis is a filopodiated amoeba which was isolated from a lake in Atlanta and deposited in the American Type Culture Collection (ATCC) under the name Nuclearia sp. ATCC 50694 on 1997 by TK Sawyer. It was classified under the genus Nuclearia and morphologically resembles to Nuclearia species, although it is smaller. Later it was determined that it phylogenetically belongs to a new nucleariid lineage., distantly related to Nuclearia and Fonticula genera – the other two previously described nucleriid genera.

Tunicaraptor is a genus of marine microbial protists containing the single species Tunicaraptor unikontum, discovered in 2020 from marine waters of Chile. It is a lineage of predatorial flagellates closely related to animals. It has a rare feeding structure not seen in other opisthokonts.

<i>Syssomonas</i> Genus of protists

Syssomonas is a monotypic genus of unicellular flagellated protists containing the species Syssomonas multiformis. It is a member of Pluriformea inside the lineage of Holozoa, a clade containing animals and their closest protistan relatives. It lives in freshwater habitats. It has a complex life cycle that includes unicellular amoeboid and flagellated phases, as well as multicellular aggregates, depending on the growth medium and nutritional state.

<span class="mw-page-title-main">Amoeboflagellate</span> Cellular body type

An amoeboflagellate is any eukaryotic organism capable of behaving as an amoeba and as a flagellate at some point during their life cycle. Amoeboflagellates present both pseudopodia and at least one flagellum, often simultaneously.

References

  1. 1 2 3 Shalchian-Tabrizi, K; Minge, MA; Espelund, M; Orr, R; Ruden, T; Jakobsen, KS; Cavalier-Smith, T (2008). "Multigene phylogeny of choanozoa and the origin of animals". PLOS ONE. 3 (5): e2098. Bibcode:2008PLoSO...3.2098S. doi: 10.1371/journal.pone.0002098 . PMC   2346548 . PMID   18461162.
  2. Hertel L. A.; Bayne C. J.; Loker, E. S. (August 2002), "The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoea", International Journal for Parasitology, 32 (9): 1183–91, doi:10.1016/S0020-7519(02)00066-8, PMID   12117501
  3. Suga, Hiroshi; Chen, Zehua; Mendoza, Alex de; Sebé-Pedrós, Arnau; Brown, Matthew W.; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel (2013-08-14). "The Capsaspora genome reveals a complex unicellular prehistory of animals". Nature Communications. 4: 2325. Bibcode:2013NatCo...4.2325S. doi:10.1038/ncomms3325. ISSN   2041-1723. PMC   3753549 . PMID   23942320.
  4. Sebé-Pedrós, Arnau; Ballaré, Cecilia; Parra-Acero, Helena; Chiva, Cristina; Tena, Juan J.; Sabidó, Eduard; Gómez-Skarmeta, José Luis; Croce, Luciano Di; Ruiz-Trillo, Iñaki (2016). "The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity". Cell. 165 (5): 1224–1237. doi:10.1016/j.cell.2016.03.034. PMC   4877666 . PMID   27114036.
  5. Sebé-Pedrós, Arnau; Peña, Marcia Ivonne; Capella-Gutiérrez, Salvador; Antó, Meritxell; Gabaldón, Toni; Ruiz-Trillo, Iñaki; Sabidó, Eduard (2016). "High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation". Developmental Cell. 39 (2): 186–197. doi: 10.1016/j.devcel.2016.09.019 . hdl: 10230/32237 . PMID   27746046.
  6. 1 2 Stibbs, H. H.; Owczarzak, A.; Bayne, C. J.; DeWan, P. (1979). "Schistosome sporocyst-killing Amoebae isolated from Biomphalaria glabrata". Journal of Invertebrate Pathology. 33 (2): 159–170. doi:10.1016/0022-2011(79)90149-6. PMID   501126.
  7. 1 2 3 Owczarzak, A.; Stibbs, H. H.; Bayne, C. J. (1980). "The destruction of Schistosoma mansonimother sporocysts in vitro by amoebae isolated fromBiomphalaria glabrata: an ultrastructural study". J Invertebr Pathol. 35 (1): 26–33. doi:10.1016/0022-2011(80)90079-8. PMID   7365267.
  8. Sebe-Pedros, A. (2013) The origin of metazoan multicellularity, a genomic and functionalapproach. PhD UB, Facultat de Biologia, Departament de Genètica
  9. 1 2 Torruella, G; Derelle, R; Paps, J; Lang, F; Roger, A; Shalchian-Tabrizi, K; Ruiz-Trillo, I (2012). "Phylogenetic relationships within theOpisthokonta based on phylogenomic analyses of conserved single copy proteindomains". Molecular Biology and Evolution. 29 (2): 531–544. doi:10.1093/molbev/msr185. PMC   3350318 . PMID   21771718.
  10. Paps, J; Medina-Chacon, L; Marshall, W; Suga, H; Ruiz-Trillo, I (2013). "Molecular phylogeny of Unikonts: new insightsinto the position of apusomonads and ancyromonads and the internalrelationships of opisthokonts". Protist. 164 (1): 2–12. doi:10.1016/j.protis.2012.09.002. PMC   4342546 . PMID   23083534.
  11. Hertel, Lynn A.; Bayne, Christopher J.; Loker, Eric S. (2002-08-01). "The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoea". International Journal for Parasitology. 32 (9): 1183–1191. doi:10.1016/s0020-7519(02)00066-8. ISSN   0020-7519. PMID   12117501.
  12. Zettler LAA, null; Nerad, T. A.; O'Kelly, C. J.; Sogin, M. L. (2001-05-01). "The nucleariid amoebae: more protists at the animal-fungal boundary". The Journal of Eukaryotic Microbiology. 48 (3): 293–297. doi:10.1111/j.1550-7408.2001.tb00317.x. ISSN   1066-5234. PMID   11411837. S2CID   44548329.
  13. Medina, Mónica; Collins, Allen G.; Taylor, John W.; Valentine, James W.; Lipps, Jere H.; Amaral-Zettler, Linda; Sogin, Mitchell L. (2003-07-01). "Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa". International Journal of Astrobiology. 2 (3): 203–211. Bibcode:2003IJAsB...2..203M. doi: 10.1017/S1473550403001551 . ISSN   1475-3006.
  14. Ruiz-Trillo, Iñaki; Inagaki, Yuji; Davis, Lesley A.; Sperstad, Sigmund; Landfald, Bjarne; Roger, Andrew J. (2004). "Capsaspora owczarzaki is an independent opisthokont lineage". Current Biology. 14 (22): R946–R947. doi: 10.1016/j.cub.2004.10.037 . PMID   15556849.
  15. Ruiz-Trillo, Inaki; Lane, Christopher E.; Archibald, John M.; Roger, Andrew J. (2006-09-01). "Insights into the evolutionary origin and genome architecture of the unicellular opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica". The Journal of Eukaryotic Microbiology. 53 (5): 379–384. doi:10.1111/j.1550-7408.2006.00118.x. ISSN   1066-5234. PMID   16968456. S2CID   24862220.
  16. Ruiz-Trillo, Iñaki; Roger, Andrew J.; Burger, Gertraud; Gray, Michael W.; Lang, B. Franz (2008-04-01). "A phylogenomic investigation into the origin of metazoa". Molecular Biology and Evolution. 25 (4): 664–672. doi: 10.1093/molbev/msn006 . ISSN   1537-1719. PMID   18184723.
  17. 1 2 Shalchian-Tabrizi, Kamran; Minge, Marianne A.; Espelund, Mari; Orr, Russell; Ruden, Torgeir; Jakobsen, Kjetill S.; Cavalier-Smith, Thomas (2008-05-07). "Multigene Phylogeny of Choanozoa and the Origin of Animals". PLOS ONE. 3 (5): e2098. Bibcode:2008PLoSO...3.2098S. doi: 10.1371/journal.pone.0002098 . ISSN   1932-6203. PMC   2346548 . PMID   18461162.
  18. Torruella, G.; Derelle, R.; Paps, J.; Lang, B. F.; Roger, A. J.; Shalchian-Tabrizi, K.; Ruiz-Trillo, I. (2012-02-01). "Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains". Molecular Biology and Evolution. 29 (2): 531–544. doi:10.1093/molbev/msr185. ISSN   0737-4038. PMC   3350318 . PMID   21771718.
  19. Torruella, Guifré; Mendoza, Alex de; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; Campo, Javier del; Eme, Laura; Pérez-Cordón, Gregorio; Whipps, Christopher M. (2015). "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology. 25 (18): 2404–2410. doi: 10.1016/j.cub.2015.07.053 . PMID   26365255.
  20. Sebe-Pedros, A; RogerA, Lang F; King, N; Ruiz-Trillo, I (2010). "Ancient origin of integrin-mediated adhesion and signaling machinery". Proceedings of the National Academy of Sciences USA. 107 (22): 10142–7. doi: 10.1073/pnas.1002257107 . PMC   2890464 . PMID   20479219.
  21. Sebe-Pedros, A; de Mendoza, A; Lang, F; Degnan, B; Ruiz-Trillo, I (2011). "Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki". Molecular Biology and Evolution. 28 (3): 1241–54. doi:10.1093/molbev/msq309. PMC   4342549 . PMID   21087945.
  22. Suga, H; DacreM; de Mendoza, A; Shalchian-Tabrizi, K; Manning, G; Ruiz-TrilloI (2012). "Genomic Survey of Premetazoans Shows Deep Conservation of Cytoplasmic Tyrosine Kinases and Multiple Radiations of Receptor Tyrosine Kinases". Science Signaling. 5 (222): ra35. doi:10.1126/scisignal.2002733. hdl: 10261/112779 . PMID   22550341. S2CID   27205070.
  23. Owczarzak, A; Stibbs, HH; Bayne, CJ (January 1980). "The destruction of Schistosoma mansoni mother sporocystsin vitro by amoebae isolated from Biomphalaria glabrata: an ultrastructuralstudy". J. Invertebr. Pathol. 35 (1): 26–33. doi:10.1016/0022-2011(80)90079-8. PMID   7365267.