Carnitine O-acetyltransferase

Last updated
CRAT
Protein CRAT PDB 1ndb.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CRAT , carnitine O-acetyltransferase, CAT1, CAT, NBIA8
External IDs OMIM: 600184 MGI: 109501 HomoloGene: 598 GeneCards: CRAT
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_007760

RefSeq (protein)

NP_031786

Location (UCSC) Chr 9: 129.09 – 129.11 Mb Chr 2: 30.4 – 30.42 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Carnitine O-acetyltransferase also called carnitine acetyltransferase (CRAT, or CAT) [5] (EC 2.3.1.7) is an enzyme that encoded by the CRAT gene that catalyzes the chemical reaction

Contents

acetyl-CoA + carnitine CoA + acetylcarnitine

where the acetyl group displaces the hydrogen atom in the central hydroxyl group of carnitine. [6]

Thus, the two substrates of this enzyme are acetyl-CoA and carnitine, whereas its two products are CoA and O-acetylcarnitine. The reaction is highly reversible and does not depend on the order in which substrates bind. [6]

Different subcellular localizations of the CRAT mRNAs are thought to result from alternative splicing of the CRAT gene suggested by the divergent sequences in the 5' region of peroxisomal and mitochondrial CRAT cDNAs and the location of an intron where the sequences diverge. The alternatively splicing of this gene results in three distinct isoforms, one of which contains an N-terminal mitochondrial transit peptide, and has been shown to be located in mitochondria. [7]

Nomenclature

This enzyme belongs to the family of transferases, to be specific those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is acetyl-CoA:carnitine O-acetyltransferase. Other names in common use include acetyl-CoA-carnitine O-acetyltransferase, acetylcarnitine transferase, carnitine acetyl coenzyme A transferase, carnitine acetylase, carnitine acetyltransferase, carnitine-acetyl-CoA transferase, and CATC. This enzyme participates in alanine and aspartate metabolism.

Structure

In general, carnitine acetyltransferases have molecular weights of about 70 kDa, and contain approximately 600 residues1. CRAT contains two domains, an N domain and a C domain, and is composed of 20 α helices and 16 β strands. The N domain consists of an eight-stranded β sheet flanked on both sides by eight α helices. A six-stranded mixed β sheet and eleven α helices comprise the enzyme’s C domain.

When compared, the cores of the two domains reflect significantly similar peptide backbone folding. This occurs despite the fact that only 4% of the amino acids that comprise those peptide backbones corresponds to one another. [5]

Active site

His343 is the catalytic residue in CRAT. [8] It is located at the interface between the enzyme’s C and N domains towards the heart of CRAT. His343 is accessible via two 15-18 Å channels that approach the residue from opposite ends of the CRAT enzyme. These channels are utilized by the substrates of CRAT, one channel for carnitine, and one for CoA. The side chain of His343 is positioned irregularly, with the δ1 ring nitrogen hydrogen bonded to the carbonyl oxygen on the amino acid backbone. [5] [9] [10]

CoA binding site

Due to the fact that CRAT binds CoA, rather than acetyl-CoA, it appears that CRAT possesses the ability to hydrolyze acetyl-CoA, before interacting with the lone CoA fragment at the binding site. [5] CoA is bound in a linear conformation with its pantothenic arm binding at the active site. Here, the pantothenic arm’s terminal thiol group and the ε2 nitrogen on the catalytic His343 side chain form a hydrogen bond. The 3’-phosphate on CoA forms interactions with residues Lys419 and Lys423. Also at the binding site, the residues Asp430 and Glu453 form a direct hydrogen bond to one another. If either residue exhibits a mutation, can result in a decrease in CRAT activity. [11] [12]

Carnitine binding site

Carnitine binds to CRAT in a partially folded state, with its hydroxyl group and carboxyl group facing opposite directions. The site itself is composed of the C domain β sheet and particular residues from the N domain. Upon binding, a face of carnitine is left exposed to the space outside the enzyme. Like CoA, carnitine forms a hydrogen bond with the ε2 nitrogen on His343. In the case of carnitine, the bond is formed with its 3-hydroxyl group. This CRAT catalysis is stereospecific for carnitine, as the stereoisomer of the 3-hydroxyl group cannot sufficiently interact with the CRAT carnitine binding site. CRAT undergoes minor conformational changes upon binding with carnitine. [5] [13] [14]

Function

Enzyme mechanism

carnitine O-acetyltransferase
Carnitine Acetyltransferase Mechanism (His343).tiff
transferase Mechanism (His343)
Identifiers
EC no. 2.3.1.7
CAS no. 9029-90-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The His343 residue at the active site of CRAT acts as a base that is able to deprotonate the CoA thiol group or the Carnitine 3’-hydroxyl group depending on the direction of the reaction. The structure of CRAT optimizes this reaction by causing direct hydrogen bonding between the His343 and both substrates. The deprotonated group is now free to attack the acetyl group of acetyl-CoA or acetylcarnitine at its carbonyl site. The reaction proceeds directly, without the formation of a His343-acetyl intermediate.

Hydrolysis

It is possible for catalysis to occur with only one of the two substrates. If either acetyl-CoA or acetylcarnitine binds to CRAT, a water molecule may fill the other binding site and act as an acetyl group acceptor.

Substrate-assisted catalysis

The literature suggests that the trimethylammonium group on carnitine may be a crucial factor in CRAT catalysis. This group exhibits a positive charge that stabilizes the oxyanion in the reaction’s intermediate. This idea is supported by the fact the positive charge of carnitine is unnecessary for active site binding, but vital for the catalysis to proceed. This has been proven to be the case through the synthesis of a carnitine analog lacking its trimethylammonium group. This compound was able to compete with carnitine in binding to CRAT, but was unable to induce a reaction. [15] The emergence of subtrate-assisted catalysis has opened up new strategies for increasing synthetic substrate specificity. [16]

Biological function

There is evidence that suggests that CRAT activity is necessary for the cell cycle to proceed from the G1 phase to the S phase. [17]

Clinical significance

Those with an inherited deficiency in CRAT activity are at risk for developing severe heart and neurological problems. [5]

Reduced CRAT activity can be found in individuals suffering from Alzheimer’s disease. [5]

CRAT and its family of enzymes have great potential as targets for developing therapeutic treatments for Type 2 diabetes and other diseases. [18] [19] [20]

Interactions

CRAT is known to interact with NEDD8, PEX5, SUMO1. [7]

Related Research Articles

<span class="mw-page-title-main">Chymotrypsin</span> Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine at the P1 position.

<span class="mw-page-title-main">Histone acetyltransferase</span> Enzymes that catalyze acyl group transfer from acetyl-CoA to histones

Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-N-acetyllysine. DNA is wrapped around histones, and, by transferring an acetyl group to the histones, genes can be turned on and off. In general, histone acetylation increases gene expression.

The peptidyl transferase is an aminoacyltransferase as well as the primary enzymatic function of the ribosome, which forms peptide bonds between adjacent amino acids using tRNAs during the translation process of protein biosynthesis. The substrates for the peptidyl transferase reaction are two tRNA molecules, one bearing the growing peptide chain and the other bearing the amino acid that will be added to the chain. The peptidyl chain and the amino acids are attached to their respective tRNAs via ester bonds to the O atom at the CCA-3' ends of these tRNAs. Peptidyl transferase is an enzyme that catalyzes the addition of an amino acid residue in order to grow the polypeptide chain in protein synthesis. It is located in the large ribosomal subunit, where it catalyzes the peptide bond formation. It is composed entirely of RNA. The alignment between the CCA ends of the ribosome-bound peptidyl tRNA and aminoacyl tRNA in the peptidyl transferase center contribute to its ability to catalyze these reactions. This reaction occurs via nucleophilic displacement. The amino group of the aminoacyl tRNA attacks the terminal carboxyl group of the peptidyl tRNA. Peptidyl transferase activity is carried out by the ribosome. Peptidyl transferase activity is not mediated by any ribosomal proteins but by ribosomal RNA (rRNA), a ribozyme. Ribozymes are the only enzymes which are not made up of proteins, but ribonucleotides. All other enzymes are made up of proteins. This RNA relic is the most significant piece of evidence supporting the RNA World hypothesis.

<span class="mw-page-title-main">Acetyl-CoA carboxylase</span> Enzyme that regulates the metabolism of fatty acids

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is a multi-subunit enzyme in most prokaryotes and in the chloroplasts of most plants and algae, whereas it is a large, multi-domain enzyme in the cytoplasm of most eukaryotes. The most important function of ACC is to provide the malonyl-CoA substrate for the biosynthesis of fatty acids. The activity of ACC can be controlled at the transcriptional level as well as by small molecule modulators and covalent modification. The human genome contains the genes for two different ACCs—ACACA and ACACB.

<span class="mw-page-title-main">Carnitine palmitoyltransferase II deficiency</span> Medical condition

Carnitine palmitoyltransferase II deficiency, sometimes shortened to CPT-II or CPT2, is an autosomal recessively inherited genetic metabolic disorder characterized by an enzymatic defect that prevents long-chain fatty acids from being transported into the mitochondria for utilization as an energy source. The disorder presents in one of three clinical forms: lethal neonatal, severe infantile hepatocardiomuscular and myopathic.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Dihydrolipoyl transacetylase</span>

Dihydrolipoyl transacetylase is an enzyme component of the multienzyme pyruvate dehydrogenase complex. The pyruvate dehydrogenase complex is responsible for the pyruvate decarboxylation step that links glycolysis to the citric acid cycle. This involves the transformation of pyruvate from glycolysis into acetyl-CoA which is then used in the citric acid cycle to carry out cellular respiration.

<span class="mw-page-title-main">Oxyanion hole</span> Pocket in the active site of an enzyme

An oxyanion hole is a pocket in the active site of an enzyme that stabilizes transition state negative charge on a deprotonated oxygen or alkoxide. The pocket typically consists of backbone amides or positively charged residues. Stabilising the transition state lowers the activation energy necessary for the reaction, and so promotes catalysis. For example, proteases such as chymotrypsin contain an oxyanion hole to stabilise the tetrahedral intermediate anion formed during proteolysis and protects substrate's negatively charged oxygen from water molecules. Additionally, it may allow for insertion or positioning of a substrate, which would suffer from steric hindrance if it could not occupy the hole. Enzymes that catalyse multi-step reactions can have multiple oxyanion holes that stabilise different transition states in the reaction.

<span class="mw-page-title-main">Carnitine O-palmitoyltransferase</span>

Carnitine O-palmitoyltransferase is a mitochondrial transferase enzyme involved in the metabolism of palmitoylcarnitine into palmitoyl-CoA. A related transferase is carnitine acyltransferase.

<span class="mw-page-title-main">Carnitine palmitoyltransferase I</span> Protein-coding gene in the species Homo sapiens

Carnitine palmitoyltransferase I (CPT1) also known as carnitine acyltransferase I, CPTI, CAT1, CoA:carnitine acyl transferase (CCAT), or palmitoylCoA transferase I, is a mitochondrial enzyme responsible for the formation of acyl carnitines by catalyzing the transfer of the acyl group of a long-chain fatty acyl-CoA from coenzyme A to l-carnitine. The product is often Palmitoylcarnitine, but other fatty acids may also be substrates. It is part of a family of enzymes called carnitine acyltransferases. This "preparation" allows for subsequent movement of the acyl carnitine from the cytosol into the intermembrane space of mitochondria.

Pantothenate kinase (EC 2.7.1.33, PanK; CoaA) is the first enzyme in the Coenzyme A (CoA) biosynthetic pathway. It phosphorylates pantothenate (vitamin B5) to form 4'-phosphopantothenate at the expense of a molecule of adenosine triphosphate (ATP). It is the rate-limiting step in the biosynthesis of CoA.

<span class="mw-page-title-main">Steroid Delta-isomerase</span>

In enzymology, a steroid Δ5-isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acetyl-CoA C-acetyltransferase</span> Class of enzymes

In enzymology, an acetyl-CoA C-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a [acyl-carrier-protein] S-acetyltransferase is an enzyme that catalyzes the reversible chemical reaction

<span class="mw-page-title-main">Carnitine O-octanoyltransferase</span>

Carnitine O-octanoyltransferase is a member of the transferase family, more specifically a carnitine acyltransferase, a type of enzyme which catalyzes the transfer of acyl groups from acyl-CoAs to carnitine, generating CoA and an acyl-carnitine. The systematic name of this enzyme is octanoyl-CoA:L-carnitine O-octanoyltransferase. Other names in common use include medium-chain/long-chain carnitine acyltransferase, carnitine medium-chain acyltransferase, easily solubilized mitochondrial carnitine palmitoyltransferase, and overt mitochondrial carnitine palmitoyltransferase. Specifically, CROT catalyzes the chemical reaction:

In enzymology, formate C-acetyltransferase is an enzyme. Pyruvate formate lyase is found in Escherichia coli and other organisms. It helps regulate anaerobic glucose metabolism. Using radical non-redox chemistry, it catalyzes the reversible conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. The reaction occurs as follows:

<span class="mw-page-title-main">Glucosamine-phosphate N-acetyltransferase</span>

In enzymology, glucosamine-phosphate N-acetyltransferase (GNA) is an enzyme that catalyzes the transfer of an acetyl group from acetyl-CoA to the primary amine in glucosamide-6-phosphate, generating a free CoA and N-acetyl-D-glucosamine-6-phosphate.

<span class="mw-page-title-main">Homocitrate synthase</span> Enzyme

In enzymology, a homocitrate synthase (EC 2.3.3.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a maltose O-acetyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Serine C-palmitoyltransferase</span>

In enzymology, a serine C-palmitoyltransferase (EC 2.3.1.50) is an enzyme that catalyzes the chemical reaction:

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000095321 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026853 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 5 6 7 Jogl G, Tong L (Jan 2003). "Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport". Cell. 112 (1): 113–22. doi: 10.1016/S0092-8674(02)01228-X . PMID   12526798. S2CID   18633987.
  6. 1 2 Bieber LL (1988). "Carnitine". Annual Review of Biochemistry. 57: 261–83. doi:10.1146/annurev.bi.57.070188.001401. PMID   3052273.
  7. 1 2 "Entrez Gene: CRAT carnitine acetyltransferase".
  8. McGarry JD, Brown NF (Feb 1997). "The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis". European Journal of Biochemistry. 244 (1): 1–14. doi:10.1111/j.1432-1033.1997.00001.x. PMID   9063439.
  9. Jogl G, Hsiao YS, Tong L (Nov 2004). "Structure and function of carnitine acyltransferases". Annals of the New York Academy of Sciences. 1033 (1): 17–29. Bibcode:2004NYASA1033...17J. doi:10.1196/annals.1320.002. PMID   15591000. S2CID   24466239.
  10. Wu D, Govindasamy L, Lian W, Gu Y, Kukar T, Agbandje-McKenna M, McKenna R (Apr 2003). "Structure of human carnitine acetyltransferase. Molecular basis for fatty acyl transfer". The Journal of Biological Chemistry. 278 (15): 13159–65. doi:10.1074/jbc.M212356200. PMID   12562770.
  11. Ramsay RR, Gandour RD, van der Leij FR (Mar 2001). "Molecular enzymology of carnitine transfer and transport". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1546 (1): 21–43. doi:10.1016/S0167-4838(01)00147-9. PMID   11257506.
  12. Hsiao YS, Jogl G, Tong L (Sep 2006). "Crystal structures of murine carnitine acetyltransferase in ternary complexes with its substrates". The Journal of Biological Chemistry. 281 (38): 28480–7. doi: 10.1074/jbc.M602622200 . PMC   2940834 . PMID   16870616.
  13. Cronin CN (Sep 1997). "The conserved serine-threonine-serine motif of the carnitine acyltransferases is involved in carnitine binding and transition-state stabilization: a site-directed mutagenesis study". Biochemical and Biophysical Research Communications. 238 (3): 784–9. doi:10.1006/bbrc.1997.7390. PMID   9325168.
  14. Hsiao YS, Jogl G, Tong L (Jul 2004). "Structural and biochemical studies of the substrate selectivity of carnitine acetyltransferase". The Journal of Biological Chemistry. 279 (30): 31584–9. doi: 10.1074/jbc.M403484200 . PMID   15155726.
  15. Saeed A, McMillin JB, Wolkowicz PE, Brouillette WJ (Sep 1993). "Carnitine acyltransferase enzymic catalysis requires a positive charge on the carnitine cofactor". Archives of Biochemistry and Biophysics. 305 (2): 307–12. doi:10.1006/abbi.1993.1427. PMID   8373168.
  16. Dall'Acqua W, Carter P (Jan 2000). "Substrate-assisted catalysis: molecular basis and biological significance". Protein Science. 9 (1): 1–9. doi:10.1110/ps.9.1.1. PMC   2144443 . PMID   10739241.
  17. Brunner S, Kramar K, Denhardt DT, Hofbauer R (Mar 1997). "Cloning and characterization of murine carnitine acetyltransferase: evidence for a requirement during cell cycle progression". The Biochemical Journal. 322 (2): 403–10. doi:10.1042/bj3220403. PMC   1218205 . PMID   9065756.
  18. Anderson RC (Feb 1998). "Carnitine palmitoyltransferase: a viable target for the treatment of NIDDM?". Current Pharmaceutical Design. 4 (1): 1–16. PMID   10197030.
  19. Giannessi F, Chiodi P, Marzi M, Minetti P, Pessotto P, De Angelis F, Tassoni E, Conti R, Giorgi F, Mabilia M, Dell'Uomo N, Muck S, Tinti MO, Carminati P, Arduini A (Jul 2001). "Reversible carnitine palmitoyltransferase inhibitors with broad chemical diversity as potential antidiabetic agents". Journal of Medicinal Chemistry. 44 (15): 2383–6. doi:10.1021/jm010889+. PMID   11448219.
  20. Wagman AS, Nuss JM (Apr 2001). "Current therapies and emerging targets for the treatment of diabetes". Current Pharmaceutical Design. 7 (6): 417–50. doi:10.2174/1381612013397915. PMID   11281851.

Further reading

]