Caudipteryx

Last updated

Caudipteryx
Temporal range: Early Cretaceous, (Aptian) ~124.6  Ma
O
S
D
C
P
T
J
K
Pg
N
Caudipteryx zoui - Untere Kreide - Liaoning-China.jpg
Mounted Caudipteryx zoui skeleton at Löwentor Museum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Clade: Oviraptorosauria
Family: Caudipteridae
Genus: Caudipteryx
Ji et al. 1998
Type species
Caudipteryx zoui
Ji et al., 1998
Other species
  • C. dongi?
    Zhou & Wang, 2000

Caudipteryx (meaning "tail feather") is a genus of small oviraptorosaur dinosaurs that lived in Asia during the Early Cretaceous, around 124.6 million years ago. They were feathered and extremely birdlike in their overall appearance, to the point that some paleontologists suggested it was a bird. Two species have been described: C. zoui (the type species), in 1998, and C. dongi, in 2000.

Contents

It had a stout trunk, long legs and was probably a swift runner. The discovery of Caudipteryx has led to many intensive studies and debate over the relationship of birds and dinosaurs.

History

Caudipteryx zoui.JPG
Paratype of C. zoui, at the Hong Kong Science Museum
Caudipteryx-Geological Museum of China.jpg
Holotype of C. zoui, at the Geological Museum of China

In 1997, several well-preserved dinosaur skeletons were recovered from the Jiulongsong Member of the Chaomidianzi Formation (now Jianshangou Bed of the Yixian Formation), at the Sihetun locality of Liaoning province, China. The fossils were later described in 1998 and used as the type specimens for the new dinosaur taxa Caudipteryx and Protarchaeopteryx . Caudipteryx was erected with the type species C. zoui and the holotype is NGMC 97-4-A, a nearly complete indivudal preserving conspicuous feather impressions and gastroliths. The paratype is NGMC 97-9-A, another relatively complete individual with feather impressions. The generic name, Caudipteryx, means "tail feather", and the specific name, zoui, is in honor of Zou Jiahua for his prominent support to the scientific community as the vice premier of China. [1]

Around the summer of 1988, a partially complete skeleton of Caudipteryx lacking the skull was found in sediments of the "Layer 6" of the Yixian Formation, at the Zhangjiagou locality, which is set apart 3 km (1.9 mi) from Sihetun. This specimen, IVPP V 12344, was in 2000 described and designed as the holotype for new species Caudipteryx dongi, and in a similar fashion to previous specimens of the genus, it preserves exquisite traces of feather integument. The specific name dongi honors Zhiming Dong, a Chinese paleontologist. [2]

Additional specimens

Specimen STM4-3 and line diagram Caudipteryx STM4-3.png
Specimen STM4-3 and line diagram

During 2000, Zhong-He Zhou and colleagues described two additional specimens of Caudipteryx, BPM 0001 and IVPP V 12430, referred to C. zoui and C. sp. respectively. Both individuals preserve nearly complete skulls and have feather impressions. [3] Further analyses to IVPP V 12430 have revealed the preservation of propatagium on its left arm. [4]

In 2021 Xiaoting Zheng and team described STM4-3 representing an articulated individual lacking the skull and tail tip, including abundant integument, gastroliths, but also a cartilage fragment that was reported to preserve chondrocytes. The specimen was collected from outcrops of the Yixian Formation at Dapingfang Town near Chaoyang city, west Liaoning. [5]

Description

Size

Size comparison of Caudipteryx species to a human Caudipteryx Scale.svg
Size comparison of Caudipteryx species to a human

Caudipteryx was a small theropod, measuring 72.5–89 cm (2 ft 4.5 in – 2 ft 11.0 in) long and weighing about 5 kg (11 lb) based on femur length. [1] [2] [6] Like many other maniraptorans, has a mix of reptile- and bird-like anatomical features. [7]

Skull

It had a short, boxy skull with a beak-like snout that retained only a few tapered teeth in the front of the upper jaw. [2]

Postcranial skeleton

Its short tail was stiffened toward the tip, with few vertebrae, like in birds and other oviraptorosaurs. It has a primitive pelvis and shoulder, and primitive skull details in the quadratojugal, squamosal, quadrate, jugal, and mandibular fenestra (in the cheek, jaw, and jaw joint). It has a hand skeleton with a reduced third finger, like that of early birds and the oviraptorid Heyuannia . [8]

Caudipteryx had uncinate processes on the ribs, birdlike teeth, a first toe which may or may not be partially reversed and overall body proportions that are comparable to those of modern flightless birds. [1] [2] [7] [3] [9]

Feathers

Wing reconstruction and feather impressions of Caudipteryx sp. (a) and C. dongi (b) Caudipteryx wing feathers.png
Wing reconstruction and feather impressions of Caudipteryx sp. (a) and C. dongi (b)

The hands of Caudipteryx supported symmetrical, pennaceous feathers that had vanes and barbs, measuring between 15–20 centimetres (5.9–7.9 inches) long. The primary feathers were arranged in a wing-like fan along the second finger, just like primary feathers of birds and other maniraptorans. An additional fan of feathers existed on its tail. The body of C. zoui was covered in black feathers, with a visible banding pattern preserved on tail feathers. [10]

A study on the number of flight feathers has concluded that Caudipteryx was secondarily flightless. [11]

Classification

Life restoration Caudipteryx UDL.png
Life restoration

The consensus view, based on several cladistic analyses, is that Caudipteryx is a basal (primitive) member of the Oviraptorosauria, and the oviraptorosaurians are non-avian theropod dinosaurs. [12] Incisivosaurus is the only oviraptorosaur that is more primitive. [13]

Halszka Osmólska et al. (2004) ran a cladistic analysis that came to a different conclusion. They found that the most birdlike features of oviraptorids actually place the whole clade within Aves itself, meaning that Caudipteryx is both an oviraptorid and a bird. In their analysis, birds evolved from more primitive theropods, and one lineage of birds became flightless, re-evolved some primitive features, and gave rise to the oviraptorids. This analysis was persuasive enough to be included in paleontological textbooks like Benton's Vertebrate Paleontology (2005). [14] The view that Caudipteryx was secondarily flightless is also preferred by Gregory S. Paul, [15] et al., [16] and Maryańska et al. [17]

Others, such as Stephen Czerkas and Larry Martin have concluded that Caudipteryx is not a theropod dinosaur at all. [18] They believe that Caudipteryx, like all maniraptorans, is a flightless bird, and that birds evolved from non-dinosaurian archosaurs. [19]

A weighted cladogram from 2014, using TNT, is shown below. [20]

Oviraptorosauria

Relationship with birds

Skeletal restorations of three specimens Caudipteryx.gif
Skeletal restorations of three specimens

Because Caudipteryx has clear and unambiguously pennaceous feathers, like modern birds, and because several cladistic analyses have consistently recovered it as a non-avian oviraptorid dinosaur, it provided, at the time of its description, the clearest and most succinct evidence that birds evolved from dinosaurs. Lawrence Witmer stated: “The presence of unambiguous feathers in an unambiguously non-avian theropod has the rhetorical impact of an atomic bomb, rendering any doubt about the theropod relationships of birds ludicrous.” [7]

However, not all scientists agreed that Caudipteryx was unambiguously non-avian, and some of them continued to doubt that general consensus. Paleornithologist Alan Feduccia sees Caudipteryx as a flightless bird evolving from earlier archosaurian dinosaurs rather than from late theropods. [21] Jones et al. (2000) found that Caudipteryx was a bird based on a mathematical comparison of the body proportions of flightless birds and non-avian theropods. Dyke and Norell (2005) criticized this result for flaws in their mathematical methods, and produced results of their own which supported the opposite conclusion. [9] [12] Other researchers not normally involved in the debate over bird origins, such as Zhou, acknowledged that the true affinities of Caudipteryx were debatable. [3]

Paleobiology

Diet

Gastroliths in stomach region of C. zoui specimen BPV 085, National Museum of Natural Science Caudipteryx zoui (BPV 085) gastroliths.jpg
Gastroliths in stomach region of C. zoui specimen BPV 085, National Museum of Natural Science

Caudipteryx is thought to have been an omnivore. In at least two specimens of Caudipteryx (NGMC 97 4 A and NGMC 97 9 A), gastroliths are preserved. As in some herbivorous dinosaurs, the avialan Sapeornis , and modern birds, these gastroliths remain in the position where the animals' gizzards would have been. [1]

Paleoenvironment

All Caudipteryx fossils were recovered from the Yixian Formation in Liaoning, China. Specifically, they come from a small area of the Jianshangou bed, near the town of Zhangjiakou. They appear to have been fairly common, though isolated to this small region. The specific region in which Caudipteryx lived was home to the other feathered dinosaurs Dilong and Sinornithosaurus . [22]

See also

Related Research Articles

<span class="mw-page-title-main">Troodontidae</span> Extinct family of bird-like dinosaurs

Troodontidae is a clade of bird-like theropod dinosaurs. During most of the 20th century, troodontid fossils were few and incomplete and they have therefore been allied, at various times, with many dinosaurian lineages. More recent fossil discoveries of complete and articulated specimens, have helped to increase understanding about this group. Anatomical studies, particularly studies of the most primitive troodontids, like Sinovenator, demonstrate striking anatomical similarities with Archaeopteryx and primitive dromaeosaurids, and demonstrate that they are relatives comprising a clade called Paraves.

<i>Oviraptor</i> Extinct genus of dinosaurs

Oviraptor is a genus of oviraptorid dinosaur that lived in Asia during the Late Cretaceous period. The first remains were collected from the Djadokhta Formation of Mongolia in 1923 during a paleontological expedition led by Roy Chapman Andrews, and in the following year the genus and type species Oviraptor philoceratops were named by Henry Fairfield Osborn. The genus name refers to the initial thought of egg-stealing habits, and the specific name was intended to reinforce this view indicating a preference over ceratopsian eggs. Despite the fact that numerous specimens have been referred to the genus, Oviraptor is only known from a single partial skeleton regarded as the holotype, as well as a nest of about fifteen eggs and several small fragments from a juvenile.

<i>Protarchaeopteryx</i> Extinct genus of dinosaurs

Protarchaeopteryx is a genus of turkey-sized feathered theropod dinosaur from China. Known from the Jianshangou bed of the Yixian Formation, it lived during the early Aptian age of the Early Cretaceous, approximately 124.6 million years ago. It was probably a herbivore or omnivore, although its hands were very similar to those of small carnivorous dinosaurs. It appears to be one of the most basal members of the Oviraptorosauria, closely related to Incisivosaurus, or a taxon slightly less closely related to birds than oviraptorosaurs were.

<span class="mw-page-title-main">Maniraptora</span> Clade of dinosaurs

Maniraptora is a clade of coelurosaurian dinosaurs which includes the birds and the non-avian dinosaurs that were more closely related to them than to Ornithomimus velox. It contains the major subgroups Avialae, Dromaeosauridae, Troodontidae, Oviraptorosauria, and Therizinosauria. Ornitholestes and the Alvarezsauroidea are also often included. Together with the next closest sister group, the Ornithomimosauria, Maniraptora comprises the more inclusive clade Maniraptoriformes. Maniraptorans first appear in the fossil record during the Jurassic Period, and survive today as living birds.

<i>Sinornithosaurus</i> Extinct genus of dinosaurs

Sinornithosaurus is a genus of feathered dromaeosaurid dinosaur from the early Cretaceous Period of the Yixian Formation in what is now China. It was the fifth non–avian feathered dinosaur genus discovered by 1999. The original specimen was collected from the Sihetun locality of western Liaoning. It was found in the Jianshangou beds of the Yixian Formation, dated to 124.5 million years ago. Additional specimens have been found in the younger Dawangzhangzi bed, dating to around 122 million years ago.

<span class="mw-page-title-main">Oviraptorosauria</span> Extinct clade of dinosaurs

Oviraptorosaurs are a group of feathered maniraptoran dinosaurs from the Cretaceous Period of what are now Asia and North America. They are distinct for their characteristically short, beaked, parrot-like skulls, with or without bony crests atop the head. They ranged in size from Caudipteryx, which was the size of a turkey, to the 8-meter-long, 1.4-ton Gigantoraptor. The group is close to the ancestry of birds. Some researchers such as Maryanska et al (2002) and Osmólska et al. (2004) have proposed that they may represent primitive flightless birds. The most complete oviraptorosaur specimens have been found in Asia. The North American oviraptorosaur record is sparse.

<i>Jinfengopteryx</i> Theropod dinosaur genus

Jinfengopteryx is a genus of maniraptoran dinosaur. It was found in the Qiaotou Member of the Huajiying Formation of Hebei Province, China, and is therefore of uncertain age. The Qiaotou Member may correlate with the more well-known Early Cretaceous Yixian Formation, and so probably dates to around 122 Ma ago.

<span class="mw-page-title-main">Scansoriopterygidae</span> Extinct family of dinosaurs

Scansoriopterygidae is an extinct family of climbing and gliding maniraptoran dinosaurs. Scansoriopterygids are known from five well-preserved fossils, representing four species, unearthed in the Tiaojishan Formation fossil beds of Liaoning and Hebei, China.

<i>Citipati</i> Genus of oviraptorid dinosaur

Citipati is a genus of oviraptorid dinosaur that lived in Asia during the Late Cretaceous period, about 75 million to 71 million years ago. It is mainly known from the Ukhaa Tolgod locality at the Djadochta Formation, where the first remains were collected during the 1990s. The genus and type species Citipati osmolskae were named and described in 2001. A second species from the adjacent Zamyn Khondt locality may also exist. Citipati is one of the best-known oviraptorids thanks to a number of well-preserved specimens, including individuals found in brooding positions atop nests of eggs, though most of them were initially referred to the related Oviraptor. These nesting specimens have helped to solidify the link between non-avian dinosaurs and birds.

<i>Incisivosaurus</i> Extinct genus of dinosaurs

Incisivosaurus is a genus of small, probably herbivorous theropod dinosaurs from the early Cretaceous Period of what is now the People's Republic of China. The first specimen to be described, IVPP V13326, is a skull that was collected from the lowermost levels of the Yixian Formation in the Sihetun area, near Beipiao City, in western Liaoning Province. The most significant, and highly unusual, characteristic of this dinosaur is its apparent adaptation to an herbivorous or omnivorous lifestyle. It was named for its prominent, rodent-like front teeth, which show wear patterns commonly found in plant-eating dinosaurs. The specific name gauthieri honors Dr. Jacques Gauthier, a pioneer of the phylogenetic method of classification.

<i>Jeholornis</i> Extinct genus of dinosaurs

Jeholornis is a genus of avialan dinosaurs that lived between approximately 122 and 120 million years ago during the early Cretaceous Period in China. Fossil Jeholornis were first discovered in the Jiufotang Formation in Hebei Province, China and additional specimens have been found in the older Yixian Formation.

<i>Nemegtomaia</i> Extinct genus of dinosaurs

Nemegtomaia is a genus of oviraptorid dinosaur from what is now Mongolia that lived in the Late Cretaceous Period, about 70 million years ago. The first specimen was found in 1996, and became the basis of the new genus and species N. barsboldi in 2004. The original genus name was Nemegtia, but this was changed to Nemegtomaia in 2005, as the former name was preoccupied. The first part of the generic name refers to the Nemegt Basin, where the animal was found, and the second part means "good mother", in reference to the fact that oviraptorids are known to have brooded their eggs. The specific name honours the palaeontologist Rinchen Barsbold. Two more specimens were found in 2007, one of which was found on top of a nest with eggs, but the dinosaur had received its genus name before it was found associated with eggs.

<span class="mw-page-title-main">Caudipteridae</span> Extinct family of dinosaurs

Caudipteridae is an extinct family of oviraptorosaurian dinosaurs known from the Early Cretaceous of China. Found in the Yixian and Jiufotang Formations, the group existed between 125 and 120 million years ago. Distinguishing characteristics of this group have been indicated as including a unique dagger-shaped pygostyle. In 2015, the group was defined as "the most inclusive clade containing Caudipteryx zoui but not Oviraptor philoceratops and Caenagnathus collinsi".

<span class="mw-page-title-main">Caenagnathidae</span> Extinct family of dinosaurs

Caenagnathidae is a family of derived caenagnathoid dinosaurs from the Cretaceous of North America and Asia. They are a member of the Oviraptorosauria, and relatives of the Oviraptoridae. Like other oviraptorosaurs, caenagnathids had specialized beaks, long necks, and short tails, and would have been covered in feathers. The relationships of caenagnathids were long a puzzle. The family was originally named by Raymond Martin Sternberg in 1940 as a family of flightless birds. The discovery of skeletons of the related oviraptorids revealed that they were in fact non-avian theropods, and the discovery of more complete caenagnathid remains revealed that Chirostenotes pergracilis, originally named on the basis of a pair of hands, and Citipes elegans, originally thought to be an ornithomimid, named from a foot, were caenagnathids as well.

<i>Sapeornis</i> Extinct genus of dinosaurs

Sapeornis is a monotypic genus of avialan dinosaurs which lived during the early Cretaceous period. Sapeornis contains only one species, Sapeornis chaoyangensis.

<i>Dongbeititan</i> Extinct genus of dinosaurs

Dongbeititan is a genus of sauropod dinosaur from the Early Cretaceous-age Yixian Formation of Beipiao, Liaoning, China. It is based on holotype DNHM D2867, a partial postcranial skeleton including bones from the limbs, shoulder and pelvic girdles, and vertebrae, which was described in 2007. Its describers suggested it was as a basal titanosauriform, not as derived as Gobititan or Jiutaisaurus, but more derived than Euhelopus, Fusuisaurus, and Huanghetitan. The type species is D. dongi, and it is the first named sauropod from the Yixian Formation, which is part of the well-known Jehol Group. The genus name refers to the region Dongbei and to Greek titan, "giant". The specific name honours the Chinese paleontologist Dong Zhiming. Like other sauropods, Dongbeititan would have been a large quadrupedal herbivore.

Zhongornis is a genus of primitive maniraptoran dinosaurs that lived during the Early Cretaceous. It was found in rocks of the Yixian Formation in Lingyuan City (China), and described by Gao et al. in 2008.

<span class="mw-page-title-main">Timeline of oviraptorosaur research</span>

This timeline of oviraptorosaur research is a chronological listing of events in the history of paleontology focused on the oviraptorosaurs, a group of beaked, bird-like theropod dinosaurs. The early history of oviraptorosaur paleontology is characterized by taxonomic confusion due to the unusual characteristics of these dinosaurs. When initially described in 1924 Oviraptor itself was thought to be a member of the Ornithomimidae, popularly known as the "ostrich" dinosaurs, because both taxa share toothless beaks. Early caenagnathid oviraptorosaur discoveries like Caenagnathus itself were also incorrectly classified at the time, having been misidentified as birds.

<span class="mw-page-title-main">Anchiornithidae</span> Extinct family of dinosaurs

Anchiornithidae is a family of small paravian dinosaurs. Anchiornithids have been classified at varying positions in the paravian tree, with some scientists classifying them as a distinct family, a basal subfamily of Troodontidae, members of Archaeopterygidae, or an assemblage of dinosaurs that are an evolutionary grade within Avialae or Paraves.

References

  1. 1 2 3 4 Ji, Q.; Currie, P.J.; Norell, M.A.; Ji, S. (1998). "Two feathered dinosaurs from northeastern China" (PDF). Nature. 393 (6687): 753–761. Bibcode:1998Natur.393..753Q. doi:10.1038/31635. S2CID   205001388. Archived from the original (PDF) on 17 December 2008.
  2. 1 2 3 4 Zhou, Z.; Wang, X. (2000). "A new species of Caudipteryx from the Yixian Formation of Liaoning, northeast China" (PDF). Vertebrata PalAsiatica. 38 (2): 113–130. Archived from the original (PDF) on 7 October 2007.
  3. 1 2 3 Zhou, Z.; Wang, X.; Zhang, F.; Xu, X. (2000). "Important features of Caudipteryx - Evidence from two nearly complete new specimens". Vertebrata PalAsiatica. 38 (4): 241–254.
  4. Uno, Y.; Hirasawa, T. (2023). "Origin of the propatagium in non-avian dinosaurs". Zoological Letters. 9 (4). doi: 10.1186/s40851-023-00204-x . PMC   9951497 .
  5. Zheng, X.; Bailleul, A. M.; Li, Z.; Zhou, Z. (2021). "Nuclear preservation in the cartilage of the Jehol dinosaur Caudipteryx". Communications Biology. 4 (1125). doi: 10.1038/s42003-021-02627-8 . PMC   8463611 . PMID   34561538.
  6. Talori, Y.S.; Zhao, J.-S.; Liu, Y.-F.; Lu, W.-X.; Li, Z.-H.; O'Connor, J.K. (2019). "Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis". PLOS Computational Biology. 15 (5). e1006846. Bibcode:2019PLSCB..15E6846T. doi: 10.1371/journal.pcbi.1006846 . PMC   6497222 . PMID   31048911.
  7. 1 2 3 Witmer, L.M. (2005). “The Debate on Avian Ancestry; Phylogeny, Function and Fossils”, Mesozoic Birds: Above the Heads of Dinosaurs : 3–30. ISBN   0-520-20094-2
  8. Osmolska, H., Currie, P.J., and Barsbold, R. (2004). "Oviraptorosauria." In Weishampel, Dodson, Osmolska (eds.) The Dinosauria, second edition. University of California Press, 2004.
  9. 1 2 Jones, T.D.; Farlow, J.O.; Ruben, J.A.; Henderson, D.M.; Hillenius, W.J. (2000). "Cursoriality in bipedal archosaurs" (PDF). Nature. 406 (6797): 716–718. Bibcode:2000Natur.406..716J. doi:10.1038/35021041. PMID   10963594. S2CID   4395244. PDF Supplementary information
  10. Roy, Arindam; Pittman, Michael; Saitta, Evan T.; Kaye, Thomas G.; Xu, Xing (2020). "Recent advances in amniote palaeocolour reconstruction and a framework for future research". Biological Reviews. 95 (1): 22–50. doi:10.1111/brv.12552. PMC   7004074 . PMID   31538399.
  11. Kiat, Yosef; O’Connor, Jingmai K. (20 February 2024). "Functional constraints on the number and shape of flight feathers". Proceedings of the National Academy of Sciences. 121 (8). doi:10.1073/pnas.2306639121. ISSN   0027-8424.
  12. 1 2 Dyke, Gareth J.; Norell, Mark A. (2005). "Caudipteryx as a non-avialan theropod rather than a flightless bird" (PDF). Acta Palaeontologica Polonica. 50 (1): 101–116.
  13. Turner, Alan H.; Pol, Diego; Clarke, Julia A.; Erickson, Gregory M.; Norell, Mark (2007). "A basal dromaeosaurid and size evolution preceding avian flight" (PDF). Science. 317 (5843): 1378–1381. Bibcode:2007Sci...317.1378T. doi: 10.1126/science.1144066 . PMID   17823350.
  14. Osmólska, Halszka, Currie, Philip J., Barsbold, Rinchen (2004) The Dinosauria Weishampel, Dodson, Osmolska. "Chapter 8 Oviraptorosauria" University of California Press.
  15. Paul, G.S. (2002). Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds. Johns Hopkins University Press, Baltimore. ISBN   0-8018-6763-0
  16. Lü, J., Dong, Z., Azuma, Y., Barsbold, R., and Tomida, Y. (2002). "Oviraptorosaurs compared to birds." In Zhou, Z., and Zhang, F. (eds.), Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, 175–189. Beijing Science Press.
  17. Maryańska, T.; Osmólska, H.; Wolsan, M. (2002). "Avialan status for Oviraptorosauria" (PDF). Acta Palaeontologica Polonica. 47 (1): 97–116.
  18. Martin, Larry D. (2004). "A basal archosaurian origin for birds". Acta Zoologica Sinica. 50 (6): 978–990.
  19. Martin, L.D.; Czerkas, S.A. (2000). "The Fossil Record of Feather Evolution in the Mesozoic". American Zoologist. 40 (4): 687–694. CiteSeerX   10.1.1.505.6483 . doi:10.1668/0003-1569(2000)040[0687:TFROFE]2.0.CO;2. S2CID   85701665.
  20. Godefroit, Pascal; Cau, Andrea; Hu, Dong-Yu; Escuillié, François; Wu, Wenhao; Dyke, Gareth (2013). "A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds". Nature. 498 (7454): 359–362. Bibcode:2013Natur.498..359G. doi:10.1038/nature12168. PMID   23719374. S2CID   4364892.
  21. Feduccia, A. (1999). The Origin and Evolution of Birds. 420 pp. Yale University Press, New Haven. ISBN   0-300-07861-7.
  22. Xu, X.; Norell, M.A. (2006). "Non-Avian dinosaur fossils from the Lower Cretaceous Jehol Group of western Liaoning, China". Geological Journal. 41 (3–4): 419–437. Bibcode:2006GeolJ..41..419X. doi:10.1002/gj.1044. S2CID   32369205.