Chemical glycosylation

Last updated

A chemical glycosylation reaction involves the coupling of a glycosyl donor, to a glycosyl acceptor forming a glycoside. [1] [2] [3] If both the donor and acceptor are sugars, then the product is an oligosaccharide. The reaction requires activation with a suitable activating reagent. The reactions often result in a mixture of products due to the creation of a new stereogenic centre at the anomeric position of the glycosyl donor. The formation of a glycosidic linkage allows for the synthesis of complex polysaccharides which may play important roles in biological processes and pathogenesis and therefore having synthetic analogs of these molecules allows for further studies with respect to their biological importance.

Contents

Terminology

The glycosylation reaction involves the coupling of a glycosyl donor and a glycosyl acceptor via initiation using an activator under suitable reaction conditions.

An activator is commonly a Lewis acid which enables the leaving group at the anomeric position to leave and results in the formation of the oxocarbenium ion.

Stereochemistry

The formation of a glycosidic linkage results in the formation of a new stereogenic centre and therefore a mixture of products may be expected to result. The linkage formed may either be axial or equatorial (α or β with respect to glucose). To better understand this, the mechanism of a glycosylation reaction must be considered.

MechChemGlycosylation.gif

Neighbouring group participation

The stereochemical outcome of a glycosylation reaction may in certain cases be affected by the type of protecting group employed at position 2 of the glycosyl donor. A participating group, typically one with a carboxyl group present, will predominantly result in the formation of a β-glycoside. Whereas a non-participating group, a group usually without a carboxyl group, will often result in an α-glycoside.

Below it can be seen that having an acetyl protecting group at position 2 allows for the formation for an acetoxonium ion intermediate that blocks attack to the bottom face of the ring therefore allowing for the formation of the β-glycoside predominantly.

NGPAcetoxoniumIon.gif

Alternatively, the absence of a participating group at position 2 allows for either attack from the bottom or top face. Since the α-glycoside product will be favoured by the anomeric effect, the α-glycoside usually predominates.

NGPBenzylExample.gif

Protecting groups

Different protecting groups on either the glycosyl donor or the glycosyl acceptor [4] [5] may affect the reactivity and yield of the glycosylation reaction. Typically, electron-withdrawing groups such as acetyl or benzoyl groups are found to decrease the reactivity of the donor/acceptor and are therefore termed "disarming" groups. Electron-donating groups such as the benzyl group, are found to increase the reactivity of the donor/acceptor and are therefore called "arming" groups.

Current methods in glycoside synthesis

Glycosyl iodides

Glycosyl iodides were first introduced for use in glycosylation reactions in 1901 by Koenigs and Knorr [6] [7] although were often considered too reactive for synthetic use. Recently several research groups have shown these donors to have unique reactive properties and can differ from other glycosyl chlorides or bromides with respect to reaction time, efficiency, and stereochemistry. [8] [9] [10] [11] Glycosyl iodides may be made under a variety of conditions, one method of note is the reaction of a 1-O-acetylpyranoside with TMSI. [12]

GlycosylIodideFormation.gif

Iodide donors may typically be activated under basic conditions to give β-glycosides with good selectivity. The use of tetraalkylammonium iodide salts such as tetrabutylammonium iodide (TBAI) allows for in-situ anomerization of the α-glycosyl halide to the β-glycosyl halide and provides the α-glycoside in good selectivity. [13] [14] [15] [16]

IodideGlycosylationExamples.gif

Thioglycosides

Thioglycosides were first reported in 1909 by Fischer [17] and since then have been explored constantly allowing for the development of numerous protocols for their preparation. The advantage of using thioglycosides is their stability under a wide range of reaction conditions allowing for protecting group manipulations. Additionally thioglycosides act as temporary protecting groups at the anomeric position allowing for thioglycosides to be useful as both glycosyl donors as well as glycosyl acceptors. [13] Thioglycosides are usually prepared by reacting per-acetylated sugars with BF
3
•OEt
2
and the appropriate thiol. [18] [19] [20]

ThioglycosidePrep.gif

Thioglycosides used in glycosylation reactions as donors can be activated under a wide range of conditions, most notably using NIS/AgOTf. [21]

SampleThioglycoside.gif

Trichloroacetimidates

Trichloroacetimidates were first introduced and explored by Schmidt in 1980 [22] [23] and since then have become very popular for glycoside synthesis. The use of trichloroacetimidates provides many advantages including ease of formation, reactivity and stereochemical outcome. [13] O-Glycosyl trichloroacetimidates are prepared via the addition of trichloroacetonitrile (Cl
3
CCN
) under basic conditions to a free anomeric hydroxyl group.

TCAPrep.gif

Typical activating groups for glycosylation reactions using trichloroacetimidates are BF
3
•OEt
2
or TMSOTf. [24]

TCAexample1.gif

Column chromatographic purification of the reaction mixture can sometimes be challenging due to the trichloroacetamide by-product. This can, however, be overcome by washing the organic layer with 1 M NaOH solution in a separatory funnel prior to chromatography. Acetyl protecting groups were found to be stable during this procedure. [25]

Notable synthetic products

Below are a few examples of some notable targets obtained via a series of glycosylation reactions.

A polyfuranoside. Docosanasaccharide.png
A polyfuranoside.
A polypyranoside. TetraMan.gif
A polypyranoside.

See also

Related Research Articles

A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

<span class="mw-page-title-main">Glycoside</span> Molecule in which a sugar is bound to another functional group

In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators. In animals and humans, poisons are often bound to sugar molecules as part of their elimination from the body.

<span class="mw-page-title-main">Amino sugar</span>

In organic chemistry, an amino sugar is a sugar molecule in which a hydroxyl group has been replaced with an amine group. More than 60 amino sugars are known, with one of the most abundant being N-Acetyl-d-glucosamine, which is the main component of chitin.

<i>n</i>-Octyl <i>beta</i>-<small>D</small>-thioglucopyranoside Chemical compound

n-Octyl β-d-thioglucopyranoside is a mild nonionic detergent that is used for cell lysis or to solubilise membrane proteins without denaturing them. This is particularly of use in order to crystallise them or to reconstitute them into lipid bilayers. It has a critical micelle concentration of 9 mM.

Glycal is a name for cyclic enol ether derivatives of sugars having a double bond between carbon atoms 1 and 2 of the ring. The term "glycal" should not be used for an unsaturated sugar that has a double bond in any position other than between carbon atoms 1 and 2.

An Endoglycosidase is an enzyme that releases oligosaccharides from glycoproteins or glycolipids. It may also cleave polysaccharide chains between residues that are not the terminal residue, although releasing oligosaccharides from conjugated protein and lipid molecules is more common.

The Reformatsky reaction is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters:

<span class="mw-page-title-main">Glycosyltransferase</span> Class of enzymes that catalyze the transfer of glycosyl groups to an acceptor

Glycosyltransferases are enzymes that establish natural glycosidic linkages. They catalyze the transfer of saccharide moieties from an activated nucleotide sugar to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be oxygen- carbon-, nitrogen-, or sulfur-based.

The Koenigs–Knorr reaction in organic chemistry is the substitution reaction of a glycosyl halide with an alcohol to give a glycoside. It is one of the oldest glycosylation reactions. It is named after Wilhelm Koenigs (1851–1906), a student of von Baeyer and fellow student with Hermann Emil Fischer, and Edward Knorr, a student of Koenigs.

<span class="mw-page-title-main">Glycosynthase</span>

The term glycosynthase refers to a class of proteins that have been engineered to catalyze the formation of a glycosidic bond. Glycosynthase are derived from glycosidase enzymes, which catalyze the hydrolysis of glycosidic bonds. They were traditionally formed from retaining glycosidase by mutating the active site nucleophilic amino acid to a small non-nucleophilic amino acid. More modern approaches use directed evolution to screen for amino acid substitutions that enhance glycosynthase activity.

<span class="mw-page-title-main">Glycoside hydrolase</span> Enzyme

Glycoside hydrolases catalyze the hydrolysis of glycosidic bonds in complex sugars. They are extremely common enzymes with roles in nature including degradation of biomass such as cellulose (cellulase), hemicellulose, and starch (amylase), in anti-bacterial defense strategies, in pathogenesis mechanisms and in normal cellular function. Together with glycosyltransferases, glycosidases form the major catalytic machinery for the synthesis and breakage of glycosidic bonds.

Nucleotide sugars are the activated forms of monosaccharides. Nucleotide sugars act as glycosyl donors in glycosylation reactions. Those reactions are catalyzed by a group of enzymes called glycosyltransferases.

Intramolecular aglycon delivery is a synthetic strategy for the construction of glycans. This approach is generally used for the formation of difficult glycosidic linkages.

<span class="mw-page-title-main">Armed and disarmed saccharides</span>

The armed/disarmed approach to glycosylation is an effective way to prevent sugar molecules from self-glycosylation when synthesizing disaccharides. This approach was first recognized when acetylated sugars only acted as glycosyl acceptors when reacted with benzylated sugars. The acetylated sugars were termed “disarmed” while the benzylated sugars were termed “armed”.

The Crich β-mannosylation in organic chemistry is a synthetic strategy which is used in carbohydrate synthesis to generate a 1,2-cis-glycosidic bond. This type of linkate is generally very difficult to make, and specific methods like the Crich β-mannosylation are used to overcome these issues.

A glycosyl donor is a carbohydrate mono- or oligosaccharide that will react with a suitable glycosyl acceptor to form a new glycosidic bond. By convention, the donor is the member of this pair that contains the resulting anomeric carbon of the new glycosidic bond. The resulting reaction is referred to as a glycosylation or chemical glycosylation.

A glycosyl acceptor is any suitable nucleophile-containing molecule that will react with a glycosyl donor to form a new glycosidic bond. By convention, the acceptor is the member of this pair which did not contain the resulting anomeric carbon of the new glycosidic bond. Since the nucleophilic atom of the acceptor is typically an oxygen atom, this can be remembered using the mnemonic of the acceptor is the alcohol. A glycosyl acceptor can be a mono- or oligosaccharide that contains an available nucleophile, such as an unprotected hydroxyl.

Carbohydrate synthesis is a sub-field of organic chemistry concerned specifically with the generation of natural and unnatural carbohydrate structures. This can include the synthesis of monosaccharide residues or structures containing more than one monosaccharide, known as oligosaccharides.

<span class="mw-page-title-main">Glucanase</span>

Glucanases are enzymes that break down large polysaccharides via hydrolysis. The product of the hydrolysis reaction is called a glucan, a linear polysaccharide made of up to 1200 glucose monomers, held together with glycosidic bonds. Glucans are abundant in the endosperm cell walls of cereals such as barley, rye, sorghum, rice, and wheat. Glucanases are also referred to as lichenases, hydrolases, glycosidases, glycosyl hydrolases, and/or laminarinases. Many types of glucanases share similar amino acid sequences but vastly different substrates. Of the known endo-glucanases, 1,3-1,4-β-glucanase is considered the most active.

<span class="mw-page-title-main">Trichloroacetonitrile</span> Chemical compound

Trichloroacetonitrile is an organic compound with the formula CCl3CN. It is a colourless liquid, although commercial samples often are brownish. It is used commercially as a precursor to the fungicide etridiazole. It is prepared by dehydration of trichloroacetamide. As a bifunctional compound, trichloroacetonitrile can react at both the trichloromethyl and the nitrile group. The electron-withdrawing effect of the trichloromethyl group activates the nitrile group for nucleophilic additions. The high reactivity makes trichloroacetonitrile a versatile reagent, but also causes its susceptibility towards hydrolysis.

References

  1. Boons, Geert-Jan; Karl J. Hale (2000). Organic synthesis with carbohydrates. Blackwell. ISBN   978-1-85075-913-3.
  2. Crich, D.; Lim, L. (2004). "Glycosylation with Sulfoxides and Sulfinates as Donors or Promoters". Org. React. 64: 115–251. doi:10.1002/0471264180.or064.02. ISBN   0471264180.
  3. Bufali, S.; Seeberger, P. (2006). "Glycosylation on Polymer Supports". Org. React. 68: 115–251. doi:10.1002/0471264180.or068.02. ISBN   0471264180.
  4. Vorm, Stefan van der; Hansen, Thomas; Hengst, Jacob M. A. van; S. Overkleeft, Herman; Marel, Gijsbert A. van der; C. Codée, Jeroen D. (2019). "Acceptor reactivity in glycosylation reactions". Chemical Society Reviews. 48 (17): 4688–4706. doi: 10.1039/C8CS00369F . hdl: 1887/79489 . PMID   31287452.
  5. Vorm, S. van der; Hansen, T.; S. Overkleeft, H.; Marel, G. A. van der; C. Codée, J. D. (2017). "The influence of acceptor nucleophilicity on the glycosylation reaction mechanism". Chemical Science. 8 (3): 1867–75. doi:10.1039/C6SC04638J. PMC   5424809 . PMID   28553477.
  6. Koenigs, Wilhelm; Knorr, Edward (1901). "Ueber einige Derivate des Traubenzuckers und der Galactose (p )". Berichte der deutschen chemischen Gesellschaft . 34 (1): 957–981. doi:10.1002/cber.190103401162.
  7. Fischer, E. (1893). "Ueber die Glucoside der Alkohole". Ber. Dtsch. Chem. Ges. 26 (3): 2400–12. doi:10.1002/cber.18930260327.
  8. Gervay, J.; Hadd, M. J. (1997). "Anionic Additions to Glycosyl Iodides: Highly Stereoselective Syntheses of β C-, N-, and O-Glycosides1". J. Org. Chem. 62 (20): 6961–67. doi:10.1021/jo970922t.
  9. Hadd, M.J.; Gervay, J. (1999). "Glycosyl iodides are highly efficient donors under neutral conditions". Carbohydr. Res. 320 (1–2): 61–69. doi:10.1016/S0008-6215(99)00146-9.
  10. Miquel, N.; Vignando, S.; Russo, G.; Lay, L. (2004). "Efficient Synthesis of O-, S-, N- and C-Glycosides of 2-Amino-2-Deoxy-d-Glucopyranose from Glycosyl Iodides". Synlett. 2004 (2): 341–3. doi:10.1055/s-2003-44978.
  11. van Well, R.M.; Kartha, K.P.R.; Field, R.A. (2005). "Iodine Promoted Glycosylation with Glycosyl Iodides: α‐Glycoside Synthesis". J. Carbohydr. Chem. 24 (4–6): 463–474. doi:10.1081/CAR-200067028. S2CID   86329924.
  12. Gervay, J.; Nguyen, T.N.; Hadd, M.J. (1997). "Mechanistic studies on the stereoselective formation of glycosyl iodides: first characterization of β-d-glycosyl iodides". Carbohydr. Res. 300 (2): 119–125. doi:10.1016/S0008-6215(96)00321-7.
  13. 1 2 3 Zhu X, Schmidt RR (2009). "New principles for glycoside-bond formation". Angew Chem Int Ed Engl. 48 (11): 1900–34. doi:10.1002/anie.200802036. PMID   19173361.
  14. Lam SN, Gervay-Hague J (October 2003). "Efficient route to 2-deoxy beta-O-aryl-d-glycosides via direct displacement of glycosyl iodides". Org Lett. 5 (22): 4219–22. doi:10.1021/ol035705v. PMID   14572289.
  15. Du W, Gervay-Hague J (May 2005). "Efficient synthesis of alpha-galactosyl ceramide analogues using glycosyl iodide donors". Org Lett. 7 (10): 2063–5. doi:10.1021/ol050659f. PMID   15876055.
  16. Du W, Kulkarni SS, Gervay-Hague J (June 2007). "Efficient, one-pot syntheses of biologically active alpha-linked glycolipids". Chem Commun. 23 (23): 2336–8. doi:10.1039/b702551c. PMID   17844738.
  17. Fischer, E.; Delbrück, K. (1909). "Über Thiophenol-glucoside". Ber. Dtsch. Chem. Ges. 42 (2): 1476–82. doi:10.1002/cber.19090420210.
  18. Tai CA, Kulkarni SS, Hung SC (October 2003). "Facile Cu(OTf)2-catalyzed preparation of per-O-acetylated hexopyranoses with stoichiometric acetic anhydride and sequential one-pot anomeric substitution to thioglycosides under solvent-free conditions". J Org Chem. 68 (22): 8719–22. doi:10.1021/jo030073b. PMID   14575510.
  19. Agnihotri G, Tiwari P, Misra AK (May 2005). "One-pot synthesis of per-O-acetylated thioglycosides from unprotected reducing sugars". Carbohydr Res. 340 (7): 1393–6. doi:10.1016/j.carres.2005.02.027. PMID   15854611.
  20. Hasegawa JY, Hamada M, Miyamoto T, Nishide K, Kajimoto T, Uenishi J, Node M (October 2005). "The application of phenylmethanethiol and benzenethiol derivatives as odorless organosulfur reagents in the synthesis of thiosugars and thioglycosides". Carbohydr Res. 340 (15): 2360–8. doi:10.1016/j.carres.2005.07.011. PMID   16143318.
  21. Veeneman, G.H.; van Leeuwen, S.H.; van Boom, J.H. (1990). "Iodonium ion promoted reactions at the anomeric centre. II an efficient thioglycoside mediated approach toward the formation of 1,2-trans linked glycosides and glycosidic esters". Tetrahedron Lett. 31 (9): 1331–4. doi:10.1016/S0040-4039(00)88799-7.
  22. Schmidt, R.R.; Michel, J. (1980). "Einfache Synthese von α-und β-O-Glykosylimidaten; Herstellung von Glykosiden und Disacchariden". Angew. Chem. 92 (9): 763–4. Bibcode:1980AngCh..92..763S. doi:10.1002/ange.19800920933.
  23. Schmidt, R.R.; Michel, J. (1980). "Facile Synthesis of α- and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides". Angew. Chem. Int. Ed. Engl. 19 (9): 731–2. doi:10.1002/anie.198007311.
  24. Kale RR, McGannon CM, Fuller-Schaefer C, Hatch DM, Flagler MJ, Gamage SD, Weiss AA, Iyer SS (2008). "Differentiation between structurally homologous Shiga 1 and Shiga 2 toxins by using synthetic glycoconjugates". Angew Chem Int Ed Engl. 47 (7): 1265–8. doi:10.1002/anie.200703680. PMID   18172842.
  25. Heuckendorff, Mads; Jensen, Henrik H. (2017). "Removal of some common glycosylation by-products during reaction work-up". Carbohydrate Research. 439: 50–56. doi:10.1016/j.carres.2016.12.007. PMID   28107657.
  26. Joe M, Bai Y, Nacario RC, Lowary TL (August 2007). "Synthesis of the docosanasaccharide arabinan domain of mycobacterial arabinogalactan and a proposed octadecasaccharide biosynthetic precursor". J Am Chem Soc. 129 (32): 9885–901. doi:10.1021/ja072892+. PMID   17655235.
  27. Wu X, Bundle DR (September 2005). "Synthesis of glycoconjugate vaccines for Candida albicans using novel linker methodology". J Org Chem. 70 (18): 7381–8. doi:10.1021/jo051065t. PMID   16122263.

Books