Classification of discontinuities

Last updated

Continuous functions are of utmost importance in mathematics, functions and applications. However, not all functions are continuous. If a function is not continuous at a point in its domain, one says that it has a discontinuity there. The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function.

Contents

The oscillation of a function at a point quantifies these discontinuities as follows:

A special case is if the function diverges to infinity or minus infinity, in which case the oscillation is not defined (in the extended real numbers, this is a removable discontinuity).

Classification

For each of the following, consider a real valued function of a real variable defined in a neighborhood of the point at which is discontinuous.

Removable discontinuity

The function in example 1, a removable discontinuity Discontinuity removable.eps.png
The function in example 1, a removable discontinuity

Consider the piecewise function

The point is a removable discontinuity . For this kind of discontinuity:

The one-sided limit from the negative direction:

and the one-sided limit from the positive direction:

at both exist, are finite, and are equal to In other words, since the two one-sided limits exist and are equal, the limit of as approaches exists and is equal to this same value. If the actual value of is not equal to then is called a removable discontinuity. This discontinuity can be removed to make continuous at or more precisely, the function

is continuous at

The term removable discontinuity is sometimes broadened to include a removable singularity, in which the limits in both directions exist and are equal, while the function is undefined at the point [lower-alpha 1] This use is an abuse of terminology because continuity and discontinuity of a function are concepts defined only for points in the function's domain.

Jump discontinuity

The function in example 2, a jump discontinuity Discontinuity jump.eps.png
The function in example 2, a jump discontinuity

Consider the function

Then, the point is a jump discontinuity.

In this case, a single limit does not exist because the one-sided limits, and exist and are finite, but are not equal: since, the limit does not exist. Then, is called a jump discontinuity, step discontinuity, or discontinuity of the first kind. For this type of discontinuity, the function may have any value at

Essential discontinuity

The function in example 3, an essential discontinuity Discontinuity essential.svg
The function in example 3, an essential discontinuity

For an essential discontinuity, at least one of the two one-sided limits does not exist in . (Notice that one or both one-sided limits can be ).

Consider the function

Then, the point is an essential discontinuity.

In this example, both and do not exist in , thus satisfying the condition of essential discontinuity. So is an essential discontinuity, infinite discontinuity, or discontinuity of the second kind. (This is distinct from an essential singularity, which is often used when studying functions of complex variables).

Supposing that is a function defined on an interval we will denote by the set of all discontinuities of on By we will mean the set of all such that has a removable discontinuity at Analogously by we denote the set constituted by all such that has a jump discontinuity at The set of all such that has an essential discontinuity at will be denoted by Of course then

Counting discontinuities of a function

The two following properties of the set are relevant in the literature.

Tom Apostol [3] follows partially the classification above by considering only removable and jump discontinuities. His objective is to study the discontinuities of monotone functions, mainly to prove Froda’s theorem. With the same purpose, Walter Rudin [4] and Karl R. Stromberg [5] study also removable and jump discontinuities by using different terminologies. However, furtherly, both authors state that is always a countable set (see [6] [7] ).

The term essential discontinuity has evidence of use in mathematical context as early as 1889. [8] However, the earliest use of the term alongside a mathematical definition seems to have been given in the work by John Klippert. [9] Therein, Klippert also classified essential discontinuities themselves by subdividing the set into the three following sets:

Of course Whenever is called an essential discontinuity of first kind. Any is said an essential discontinuity of second kind. Hence he enlarges the set without losing its characteristic of being countable, by stating the following:

Rewriting Lebesgue's Theorem

When and is a bounded function, it is well-known of the importance of the set in the regard of the Riemann integrability of In fact, Lebesgue's Theorem (also named Lebesgue-Vitali) theorem) states that is Riemann integrable on if and only if is a set with Lebesgue's measure zero.

In this theorem seems that all type of discontinuities have the same weight on the obstruction that a bounded function be Riemann integrable on Since countable sets are sets of Lebesgue's measure zero and a countable union of sets with Lebesgue's measure zero is still a set of Lebesgue's mesure zero, we are seeing now that this is not the case. In fact, the discontinuities in the set are absolutely neutral in the regard of the Riemann integrability of The main discontinuities for that purpose are the essential discontinuities of first kind and consequently the Lebesgue-Vitali theorem can be rewritten as follows:

The case where correspond to the following well-known classical complementary situations of Riemann integrability of a bounded function :

Examples

Thomae's function is discontinuous at every non-zero rational point, but continuous at every irrational point. One easily sees that those discontinuities are all removable. By the first paragraph, there does not exist a function that is continuous at every rational point, but discontinuous at every irrational point.

The indicator function of the rationals, also known as the Dirichlet function, is discontinuous everywhere. These discontinuities are all essential of the first kind too.

Consider now the ternary Cantor set and its indicator (or characteristic) function

One way to construct the Cantor set is given by where the sets are obtained by recurrence according to

In view of the discontinuities of the function let's assume a point

Therefore there exists a set used in the formulation of , which does not contain That is, belongs to one of the open intervals which were removed in the construction of This way, has a neighbourhood with no points of (In another way, the same conclusion follows taking into account that is a closed set and so its complementary with respect to is open). Therefore only assumes the value zero in some neighbourhood of Hence is continuous at

This means that the set of all discontinuities of on the interval is a subset of Since is an uncountable set with null Lebesgue measure, also is a null Lebesgue measure set and so in the regard of Lebesgue-Vitali theorem is a Riemann integrable function.

More precisely one has In fact, since is a nonwhere dense set, if then no neighbourhood of can be contained in This way, any neighbourhood of contains points of and points which are not of In terms of the function this means that both and do not exist. That is, where by as before, we denote the set of all essential discontinuities of first kind of the function Clearly

Discontinuities of derivatives

Let now an open interval and the derivative of a function, , differentiable on . That is, for every .

It is well-known that according to Darboux's Theorem the derivative function has the restriction of satisfying the intermediate value property.

can of course be continuous on the interval . Recall that any continuous function, by Bolzano's Theorem, satisfies the intermediate value property.

On the other hand, the intermediate value property does not prevent from having discontinuities on the interval . But Darboux's Theorem has an immediate consequence on the type of discontinuities that can have. In fact, if is a point of discontinuity of , then necessarily is an essential discontinuity of . [11]

This means in particular that the following two situations cannot occur:

  1. is a removable discontinuity of .
  2. is a jump discontinuity of .

Furtherly, two other situations have to be excluded (see John Klippert [12] ):

Observe that whenever one of the conditions (i), (ii), (iii), or (iv) is fulfilled for some one can conclude that fails to possess an antiderivative, , on the interval .

On the other hand, a new type of discontinuity with respect to any function can be introduced: an essential discontinuity, , of the function , is said to be a fundamental essential discontinuity of if

and

Therefore if is a discontinuity of a derivative function , then necessarily is a fundamental essential discontinuity of .

Notice also that when and is a bounded function, as in the assumptions of Lebesgue's Theorem, we have for all :

and

Therefore any essential discontinuity of is a fundamental one.

See also

Notes

  1. See, for example, the last sentence in the definition given at Mathwords. [1]

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of Analysis and Topology, where they are used to characterize many important topological properties that, sequences are unable to characterize. Nets are in one-to-one correspondence with filters.

<span class="mw-page-title-main">Riemann integral</span> Basic integral in elementary calculus

In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo integration.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

<span class="mw-page-title-main">Semi-continuity</span> Property of functions which is weaker than continuity

In mathematical analysis, semicontinuity is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function is uppersemicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher than

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

<span class="mw-page-title-main">Differentiable function</span> Mathematical function whose derivative exists

In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth and does not contain any break, angle, or cusp.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

<span class="mw-page-title-main">Improper integral</span> Concept in mathematical analysis

In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. In the context of Riemann integrals, this typically involves unboundedness, either of the set over which the integral is taken or of the integrand, or both. It may also involve bounded but not closed sets or bounded but not continuous functions. While an improper integral is typically written symbolically just like a standard definite integral, it actually represents a limit of a definite integral or a sum of such limits; thus improper integrals are said to converge or diverge. If a regular definite integral is worked out as if it is improper, the same answer will result.

In functional analysis, it is often convenient to define a linear transformation on a complete, normed vector space by first defining a linear transformation on a dense subset of and then continuously extending to the whole space via the theorem below. The resulting extension remains linear and bounded, and is thus continuous, which makes it a continuous linear extension.

<span class="mw-page-title-main">Oscillation (mathematics)</span> Amount of variation between extrema

In mathematics, the oscillation of a function or a sequence is a number that quantifies how much that sequence or function varies between its extreme values as it approaches infinity or a point. As is the case with limits, there are several definitions that put the intuitive concept into a form suitable for a mathematical treatment: oscillation of a sequence of real numbers, oscillation of a real-valued function at a point, and oscillation of a function on an interval.

In mathematics, the Dirichlet function is the indicator function of the set of rational numbers , i.e. if x is a rational number and if x is not a rational number.

In the branch of mathematics known as real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral. Consequently, introductory textbooks on calculus and real analysis often develop Riemann integration using the Darboux integral, rather than the true Riemann integral. Moreover, the definition is readily extended to defining Riemann–Stieltjes integration. Darboux integrals are named after their inventor, Gaston Darboux (1842–1917).

<span class="mw-page-title-main">Thomae's function</span> Function that is discontinuous at rationals and continuous at irrationals

Thomae's function is a real-valued function of a real variable that can be defined as:

<span class="mw-page-title-main">Lebesgue integration</span> Method of integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.

In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

References

  1. "Mathwords: Removable Discontinuity".
  2. Stromberg, Karl R. (2015). An Introduction to Classical Real Analysis. American Mathematical Society. pp. 120. Ex. 3 (c). ISBN   978-1-4704-2544-9.
  3. Apostol, Tom (1974). Mathematical Analysis (second ed.). Addison and Wesley. pp. 92, sec. 4.22, sec. 4.23 and Ex. 4.63. ISBN   0-201-00288-4.
  4. Walter, Rudin (1976). Principles of Mathematical Analysis (third ed.). McGraw-Hill. pp. 94, Def. 4.26, Thms. 4.29 and 4.30. ISBN   0-07-085613-3.
  5. Stromberg, Karl R. Op. cit. pp. 128, Def. 3.87, Thm. 3.90.
  6. Walter, Rudin. Op. cit. pp. 100, Ex. 17.
  7. Stromberg, Karl R. Op. cit. pp. 131, Ex. 3.
  8. Whitney, William Dwight (1889). The Century Dictionary: An Encyclopedic Lexicon of the English Language. Vol. 2. London and New York: T. Fisher Unwin and The Century Company. p. 1652. ISBN   9781334153952. Archived from the original on 2008-12-16. An essential discontinuity is a discontinuity in which the value of the function becomes entirely indeterminable.
  9. Klippert, John (February 1989). "Advanced Advanced Calculus: Counting the Discontinuities of a Real-Valued Function with Interval Domain". Mathematics Magazine. 62: 43–48. doi:10.1080/0025570X.1989.11977410 via JSTOR.
  10. Metzler, R. C. (1971). "On Riemann Integrability". American Mathematical Monthly. 78 (10): 1129–1131. doi:10.1080/00029890.1971.11992961.
  11. Rudin, Walter. Op.cit. pp. 109, Corollary.
  12. Klippert, John (2000). "On a discontinuity of a derivative". International Journal of Mathematical Education in Science and Technology. 31:S2: 282–287. doi:10.1080/00207390050032252.

Sources