Clastic wedge

Last updated
Sedimentary (Wedge) build-up in Dinosaur Ridge, Colorado, USA. Channel edge in sandstone (Dakota Sandstone, Lower Cretaceous; Dinosaur Ridge, Colorado, USA) 7.jpg
Sedimentary (Wedge) build-up in Dinosaur Ridge, Colorado, USA.

In geology, a clastic wedge is a thick accumulation of sediments or sedimentary rocks eroded and deposited landward of a mountain chain or geological boundary. They begin at the mountain front, thicken considerably landwards of it to a peak depth, and progressively thin with increasing distance inland. As they are often lens-shaped in profile, the process by which these sedimentary wedges are shaped is due to the regressive and transgressive movement from bodies of water. [1] Some examples of clastic wedges in the United States are the Catskill Delta in Appalachia and the sequence of Jurassic and Cretaceous sediments deposited in the Cordilleran foreland basin in the Rocky Mountains. [2]

Contents

Associations

Not all clastic wedges are associated with mountains. They are also a characteristic of passive continental margins such as the Gulf Coast; these are quiescent environments, where sediments have accumulated to great thickness over a long period of time. [3] In addition to prehistoric clastic wedges that have grown over time, the presence of microfossils and organic materials shown to be more abundant. [4] These passive margin continental shelf sediment sequences are termed miogeoclines. [5]

Clastic wedges are often separated into one of two distinct types: flysch, mostly dark shales that originate from moderate to deep marine water; and molasse, which is composed mainly of red sandstones, conglomerates, and shales that were deposited in terrestrial or shallow marine environments. [2]

Sedimentary cycles

The conceptual geology of a clastic wedge can be referred to sedimentary cycles; in which is the reoccurring sequence of geological events upon stratigraphic surfaces, specifically involving seismologic alterations and storms. [4] Such events can be correlated to that of typical geological structures, some of which may include deltaic environments or plate tectonics boundaries.

When looking at the development of certain cyclic sequences, it is based upon allogenic and autogenic processes. In regards of the allogenic sedimentary process, it refers to external or extrinsic factors that influence a geological system or environment. Inversely, as for that of the autogenic sedimentary process, it relates internal or intrinsic mechanisms that directly effect geological structures and systems. [4] As of how such methods relate to that of sedimentary cycles and clastic wedges, they come into effect by shaping and weathering surfaces (allogenic) that will conclude in becoming compacted and cemented (autogenic) to the area of crust. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

Sedimentology encompasses the study of modern sediments such as sand, silt, and clay, and the processes that result in their formation, transport, deposition and diagenesis. Sedimentologists apply their understanding of modern processes to interpret geologic history through observations of sedimentary rocks and sedimentary structures.

<span class="mw-page-title-main">Siltstone</span> Sedimentary rock which has a grain size in the silt range

Siltstone, also known as aleurolite, is a clastic sedimentary rock that is composed mostly of silt. It is a form of mudrock with a low clay mineral content, which can be distinguished from shale by its lack of fissility.

<span class="mw-page-title-main">Turbidite</span> Geologic deposit of a turbidity current

A turbidite is the geologic deposit of a turbidity current, which is a type of amalgamation of fluidal and sediment gravity flow responsible for distributing vast amounts of clastic sediment into the deep ocean.

Sequence stratigraphy is a branch of geology, specifically a branch of stratigraphy, that attempts to discern and understand historic geology through time by subdividing and linking sedimentary deposits into unconformity bounded units on a variety of scales. The essence of the method is mapping of strata based on identification of surfaces which are assumed to represent time lines, thereby placing stratigraphy in chronostratigraphic framework allowing understanding of the evolution of the Earth's surface in a particular region through time. Sequence stratigraphy is a useful alternative to a purely lithostratigraphic approach, which emphasizes solely based on the compositional similarity of the lithology of rock units rather than time significance. Unconformities are particularly important in understanding geologic history because they represent erosional surfaces where there is a clear gap in the record. Conversely within a sequence the geologic record should be relatively continuous and complete record that is genetically related.

<span class="mw-page-title-main">Bengal Fan</span>

The Bengal Fan, also known as the Ganges Fan, is the largest submarine fan on Earth.

<span class="mw-page-title-main">Graded bedding</span> Type of layering in sediment or sedimentary rock

In geology, a graded bed is a bed characterized by a systematic change in grain or clast size from bottom to top of the bed. Most commonly this takes the form of normal grading, with coarser sediments at the base, which grade upward into progressively finer ones. Such a bed is also described as fining upward. Normally graded beds generally represent depositional environments which decrease in transport energy as time passes, but these beds can also form during rapid depositional events. They are perhaps best represented in turbidite strata, where they indicate a sudden strong current that deposits heavy, coarse sediments first, with finer ones following as the current weakens. They can also form in terrestrial stream deposits.

<span class="mw-page-title-main">Ecca Group</span> Second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa

The Ecca Group is the second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa. It mainly follows conformably after the Dwyka Group in some sections, but in some localities overlying unconformably over much older basement rocks. It underlies the Beaufort Group in all known outcrops and exposures. Based on stratigraphic position, lithostratigraphic correlation, palynological analyses, and other means of geological dating, the Ecca Group ranges between Early to earliest Middle Permian in age.

Abyssal channels are channels in Earth's sea floor. They are formed by fast-flowing floods of turbid water caused by avalanches near the channel's head, with the sediment carried by the water causing a build-up of the surrounding abyssal plains. Submarine channels and the turbidite systems which form them are responsible for the accumulation of most sandstone deposits found on continental slopes and have proven to be one of the most common types of hydrocarbon reservoirs found in these regions.

A miogeocline is an area of sedimentation which occurs along the passive margin of a continent. The deposits occur as typically shallow water clastic sediments which thicken seaward to form a clastic wedge parallel to a tectonically quiescent coast. Modern examples include the continental shelf of the northern Gulf of Mexico and the Atlantic coast of North and South America.

<span class="mw-page-title-main">Growth fault</span>

Growth faults are syndepositional or syn-sedimentary extensional faults that initiate and evolve at the margins of continental plates. They extend parallel to passive margins that have high sediment supply. Their fault plane dips mostly toward the basin and has long-term continuous displacement. Figure one shows a growth fault with a concave upward fault plane that has high updip angle and flattened at its base into zone of detachment or décollement. This angle is continuously changing from nearly vertical in the updip area to nearly horizontal in the downdip area.

The Elk Formation is a stratigraphic unit of the Western Canada Sedimentary Basin that is present in southeastern British Columbia and southwestern Alberta. It is probably of Early Cretaceous age, but in some areas its strata could be as old as Late Jurassic. It includes minor thin coal beds and was named for outcrops near the now-abandoned Elk River coal mine east of Fernie, British Columbia.

<span class="mw-page-title-main">Salt surface structures</span> Geologic feature

Salt surface structures are extensions of salt tectonics that form at the Earth's surface when either diapirs or salt sheets pierce through the overlying strata. They can occur in any location where there are salt deposits, namely in cratonic basins, synrift basins, passive margins and collisional margins. These are environments where mass quantities of water collect and then evaporate; leaving behind salt and other evaporites to form sedimentary beds. When there is a difference in pressure, such as additional sediment in a particular area, the salt beds – due to the unique ability of salt to behave as a fluid under pressure – form into new structures. Sometimes, these new bodies form subhorizontal or moderately dipping structures over a younger stratigraphic unit, which are called allochthonous salt bodies or salt surface structures.

<span class="mw-page-title-main">Northern North Sea basin</span>

The North Sea is part of the Atlantic Ocean in northern Europe. It is located between Norway and Denmark in the east, Scotland and England in the west, Germany, the Netherlands, Belgium and France in the south.

<span class="mw-page-title-main">Columbus Basin</span>

The Columbus Basin is a foreland basin located off the south eastern coast of Trinidad within the East Venezuela Basin (EVB). Due to the intensive deformation occurring along the Caribbean and South American plates in this region, the basin has a unique structural and stratigraphic relationship. The Columbus Basin has been a prime area for hydrocarbon exploration and production as its structures, sediments and burial history provide ideal conditions for generation and storage of hydrocarbon reserves. The Columbus Basin serves as a depocenter for the Orinoco River delta, where it is infilled with 15 km of fluvio-deltaic sediment. The area has also been extensively deformed by series of north west to southeast normal faults and northeast to southwest trending anticline structures.

The Angola Basin is located along the West African South Atlantic Margin which extends from Cameroon to Angola. It is characterized as a passive margin that began spreading in the south and then continued upwards throughout the basin. This basin formed during the initial breakup of the supercontinent Pangaea during the early Cretaceous, creating the Atlantic Ocean and causing the formation of the Angola, Cape, and Argentine basins. It is often separated into two units: the Lower Congo Basin, which lies in the northern region and the Kwanza Basin which is in the southern part of the Angola margin. The Angola Basin is famous for its "Aptian Salt Basins," a thick layer of evaporites that has influenced topography of the basin since its deposition and acts as an important petroleum reservoir.

The Transvaal Supergroup is a stratigraphic unit in northern South Africa and southern Botswana, situated on the Kaapvaal Craton, roughly between 23 and 29 degrees southern latitude and 22 to 30 degrees eastern longitude. It is dated to the boundary between the Archean and Proterozoic eras, roughly 2,500 Mya. It is delimited by the Witwatersrand Basin and the Bushveld Igneous Complex.

The Kootenay Group, originally called the Kootenay Formation, is a geologic unit of latest Jurassic to earliest Cretaceous age in the Western Canada Sedimentary Basin that is present in the southern and central Canadian Rockies and foothills. It includes economically important deposits of high-rank bituminous and semi-anthracite coal, as well as plant fossils and dinosaur trackways.

The geology of Iraq includes thick sequences of marine and continental sedimentary rocks over poorly understood basement rock, at the junction of the Arabian Plate, the Anatolian Plate, and the Iranian Plate.

In sequence stratigraphy, condensed sections are strata that are thin, yet span a large time interval. They are associated with the maximum flooding surfaces, represented by sedimentary intervals deposited during the maximum marine transgression.

References

  1. Zecchin, Massimo; Catuneanu, Octavian (2015-04-01). "High-resolution sequence stratigraphy of clastic shelves III: Applications to reservoir geology". Marine and Petroleum Geology. 62: 161–175. doi:10.1016/j.marpetgeo.2014.08.025. ISSN   0264-8172.
  2. 1 2 Stanley, Steven M. Earth System History. New York: W.H. Freeman and Company, 1999. ISBN   0-7167-2882-6 pp. 243, 489
  3. Stanley, p. 516
  4. 1 2 3 Zecchin, Massimo; Catuneanu, Octavian (2013-01-01). "High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces". Marine and Petroleum Geology. 39 (1): 1–25. doi:10.1016/j.marpetgeo.2012.08.015. ISSN   0264-8172.
  5. Dietz, Robert S. and John C. Holden, 1966, Miogeoclines (Miogeosynclines) in Space and Time, Journal of Geology, Vol. 74, No. 5, Part 1 (Sep., 1966), pp. 566-583
  6. Zecchin, Massimo; Catuneanu, Octavian (2017-12-01). "High-resolution sequence stratigraphy of clastic shelves VI: Mixed siliciclastic-carbonate systems". Marine and Petroleum Geology. 88: 712–723. doi:10.1016/j.marpetgeo.2017.09.012. ISSN   0264-8172.