Climbing fiber

Last updated

Climbing fiber
Diagram of the Microanatomy of Human Cerebellar Cortex.svg
Microcircuitry of the cerebellum. Excitatory synapses are denoted by (+) and inhibitory synapses by (-). Climbing fiber is shown originating from the inferior olive (green).
Details
Location Inferior olive and Cerebellum [ citation needed ]
ShapeUnique projection neuron (see text)
FunctionUnique excitatory function (see text)
Neurotransmitter Glutamate
Presynaptic connections Inferior olive
Postsynaptic connections Purkinje cells
Anatomical terms of neuroanatomy

Climbing fibers are the name given to a series of neuronal projections from the inferior olivary nucleus located in the medulla oblongata. [1] [2]

Contents

These axons pass through the pons and enter the cerebellum via the inferior cerebellar peduncle where they form synapses with the deep cerebellar nuclei and Purkinje cells. Each climbing fiber will form synapses with 1-10 Purkinje cells.

Early in development, Purkinje cells are innervated by multiple climbing fibers, but as the cerebellum matures, these inputs gradually become eliminated resulting in a single climbing fiber input per Purkinje cell.

These fibers provide very powerful, excitatory input to the cerebellum which results in the generation of complex spike excitatory postsynaptic potential (EPSP) in Purkinje cells. [1] In this way climbing fibers (CFs) perform a central role in motor behaviors. [3]

The climbing fibers carry information from various sources such as the spinal cord, vestibular system, red nucleus, superior colliculus, reticular formation and sensory and motor cortices. Climbing fiber activation is thought to serve as a motor error signal sent to the cerebellum, and is an important signal for motor timing. In addition to the control and coordination of movements, [4] the climbing fiber afferent system contributes to sensory processing and cognitive tasks likely by encoding the timing of sensory input independently of attention or awareness. [5] [6] [7]

In the central nervous system, these fibers are able to undergo remarkable regenerative modifications in response to injuries, being able to generate new branches by sprouting to innervate surrounding Purkinje cells if these lose their CF innervation. [8] This kind of injury-induced sprouting has been shown to need the growth associated protein GAP-43. [9] [10] [11]

See also

Related Research Articles

Cerebellum Structure at the rear of the vertebrate brain, beneath the cerebrum

The cerebellum is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebellum plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language as well as emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The human cerebellum does not initiate movement, but contributes to coordination, precision, and accurate timing: it receives input from sensory systems of the spinal cord and from other parts of the brain, and integrates these inputs to fine-tune motor activity. Cerebellar damage produces disorders in fine movement, equilibrium, posture, and motor learning in humans.

In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress.

Eyeblink conditioning (EBC) is a form of classical conditioning that has been used extensively to study neural structures and mechanisms that underlie learning and memory. The procedure is relatively simple and usually consists of pairing an auditory or visual stimulus with an eyeblink-eliciting unconditioned stimulus (US). Naïve organisms initially produce a reflexive, unconditioned response (UR) that follows US onset. After many CS-US pairings, an association is formed such that a learned blink, or conditioned response (CR), occurs and precedes US onset. The magnitude of learning is generally gauged by the percentage of all paired CS-US trials that result in a CR. Under optimal conditions, well-trained animals produce a high percentage of CRs. The conditions necessary for, and the physiological mechanisms that govern, eyeblink CR learning have been studied across many mammalian species, including mice, rats, guinea pigs, rabbits, ferrets, cats, and humans. Historically, rabbits have been the most popular research subjects.

Neural pathway

A neural pathway is the connection formed by axons that project from neurons to make synapses onto neurons in another location, to enable a signal to be sent from one region of the nervous system to another. Neurons are connected by a single axon, or by a bundle of axons known as a nerve tract, or fasciculus. Shorter neural pathways are found within grey matter in the brain, whereas longer projections, made up of myelinated axons, constitute white matter.

Inferior olivary nucleus Brain structure in the medulla that helps coordinate movement

The inferior olivary nucleus (ION), is a structure found in the medulla oblongata underneath the superior olivary nucleus. In vertebrates, the ION is known to coordinate signals from the spinal cord to the cerebellum to regulate motor coordination and learning. These connections have been shown to be tightly associated, as degeneration of either the cerebellum or the ION results in degeneration of the other.

Cerebellar vermis Structure connecting the two cerebellar hemispheres

The cerebellar vermis is located in the medial, cortico-nuclear zone of the cerebellum, which is in the posterior fossa of the cranium. The primary fissure in the vermis curves ventrolaterally to the superior surface of the cerebellum, dividing it into anterior and posterior lobes. Functionally, the vermis is associated with bodily posture and locomotion. The vermis is included within the spinocerebellum and receives somatic sensory input from the head and proximal body parts via ascending spinal pathways.

Basket cell

Basket cells are inhibitory GABAergic interneurons of the brain, found throughout different regions of the cortex and cerebellum.

Purkinje cell

Purkinje cells, or Purkinje neurons, are a class of GABAergic inhibitory neurons located in the cerebellum. They are named after their discoverer, Czech anatomist Jan Evangelista Purkyně, who characterized the cells in 1839.

Spinocerebellar tract

The spinocerebellar tract is a nerve tract originating in the spinal cord and terminating in the same side (ipsilateral) of the cerebellum.

Deep cerebellar nuclei

The cerebellum has four deep cerebellar nuclei embedded in the white matter in its center.

Inferior cerebellar peduncle

The upper part of the posterior district of the medulla oblongata is occupied by the inferior cerebellar peduncle, a thick rope-like strand situated between the lower part of the fourth ventricle and the roots of the glossopharyngeal and vagus nerves.

Dentate nucleus Nucleus in the centre of each cerebellar hemisphere

The dentate nucleus is a cluster of neurons, or nerve cells, in the central nervous system that has a dentate – tooth-like or serrated – edge. It is located within the deep white matter of each cerebellar hemisphere, and it is the largest single structure linking the cerebellum to the rest of the brain. It is the largest and most lateral, or farthest from the midline, of the four pairs of deep cerebellar nuclei, the others being the globose and emboliform nuclei, which together are referred to as the interposed nucleus, and the fastigial nucleus. The dentate nucleus is responsible for the planning, initiation and control of voluntary movements. The dorsal region of the dentate nucleus contains output channels involved in motor function, which is the movement of skeletal muscle, while the ventral region contains output channels involved in nonmotor function, such as conscious thought and visuospatial function.

Fastigial nucleus Grey matter nucleus in the cerebellum

The fastigial nucleus is located in the cerebellum. It is one of the four deep cerebellar nuclei, and is grey matter embedded in the white matter of the cerebellum.

Flocculus

The flocculus is a small lobe of the cerebellum at the posterior border of the middle cerebellar peduncle anterior to the biventer lobule. Like other parts of the cerebellum, the flocculus is involved in motor control. It is an essential part of the vestibulo-ocular reflex, and aids in the learning of basic motor skills in the brain.

Cochlear nucleus Two cranial nerve nuclei of the human brainstem

The cochlear nuclear (CN) complex comprises two cranial nerve nuclei in the human brainstem, the ventral cochlear nucleus (VCN) and the dorsal cochlear nucleus (DCN). The ventral cochlear nucleus is unlayered whereas the dorsal cochlear nucleus is layered. Auditory nerve fibers, fibers that travel through the auditory nerve carry information from the inner ear, the cochlea, on the same side of the head, to the nerve root in the ventral cochlear nucleus. At the nerve root the fibers branch to innervate the ventral cochlear nucleus and the deep layer of the dorsal cochlear nucleus. All acoustic information thus enters the brain through the cochlear nuclei, where the processing of acoustic information begins. The outputs from the cochlear nuclei are received in higher regions of the auditory brainstem.

Alpha motor neuron

Alpha (α) motor neurons (also called alpha motoneurons), are large, multipolar lower motor neurons of the brainstem and spinal cord. They innervate extrafusal muscle fibers of skeletal muscle and are directly responsible for initiating their contraction. Alpha motor neurons are distinct from gamma motor neurons, which innervate intrafusal muscle fibers of muscle spindles.

Mossy fiber (cerebellum)

Mossy fibers are one of the major inputs to cerebellum. There are many sources of this pathway, the largest of which is the cerebral cortex, which sends input to the cerebellum via the pontocerebellar pathway. Other contributors include the vestibular nerve and nuclei, the spinal cord, the reticular formation, and feedback from deep cerebellar nuclei. Axons enter the cerebellum via the middle and inferior cerebellar peduncles, where some branch to make contact with deep cerebellar nuclei. They ascend into the white matter of the cerebellum, where each axon branches to innervate granule cells in several cerebellar folia.

Anatomy of the cerebellum Structures in the cerebellum, a part of the brain

The anatomy of the cerebellum can be viewed at three levels. At the level of gross anatomy, the cerebellum consists of a tightly folded and crumpled layer of cortex, with white matter underneath, several deep nuclei embedded in the white matter, and a fluid-filled ventricle in the middle. At the intermediate level, the cerebellum and its auxiliary structures can be broken down into several hundred or thousand independently functioning modules or compartments known as microzones. At the microscopic level, each module consists of the same small set of neuronal elements, laid out with a highly stereotyped geometry.

Cerebellar granule cell thick granular layer of the cerebellar cortex

Cerebellar granule cells form the thick granular layer of the cerebellar cortex and are among the smallest neurons in the brain. Cerebellar granule cells are also the most numerous neurons in the brain: in humans, estimates of their total number average around 50 billion, which means that they constitute about 3/4 of the brain's neurons.

Granule cell Type of neuron with a very small cell body

The name granule cell has been used for a number of different types of neuron whose only common feature is that they all have very small cell bodies. Granule cells are found within the granular layer of the cerebellum, the dentate gyrus of the hippocampus, the superficial layer of the dorsal cochlear nucleus, the olfactory bulb, and the cerebral cortex.

References

  1. 1 2 Harting, John K.; Helmrick, Kevin J. (1996–1997). "Cerebellum - Circuitry - Climbing Fibers" . Retrieved December 25, 2008.
  2. Bear, Mark F.; Michael A. Paradiso; Barry W. Connors (2006). Neuroscience: Exploring the Brain (Digitised online by Google Books). Lippincott Williams & Wilkins. p. 773. ISBN   978-0-7817-6003-4 . Retrieved December 25, 2008. Image of Parallel fiber
  3. McKay, Bruce E.; Engbers, Jordan D. T., W. Hamish Mehaffey, Grant R. J. Gordon, Michael L. Molineux, Jaideep S. Bains, and Ray W. Turner; Mehaffey, WH; Gordon, GR; Molineux, ML; Bains, JS; Turner, RW (January 31, 2007). "Climbing Fiber Discharge Regulates Cerebellar Functions by Controlling the Intrinsic Characteristics of Purkinje Cell Output" (PDF). Journal of Neurophysiology. 97 (4): 2590–604. CiteSeerX   10.1.1.325.2405 . doi:10.1152/jn.00627.2006. PMID   17267759 . Retrieved December 25, 2008.
  4. "Medical Neurosciences". Archived from the original on January 13, 2012.
  5. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing" J Neurosci 2006; 26: 5990-5.
  6. Liu T, Xu D, Ashe J, Bushara K. Specificity of inferior olive response to stimulus timing. J Neurophysiol 2008; 100: 1557-61.
  7. Wu X, Ashe J, Bushara KO. Role of olivocerebellar system in timing without awareness. Proc Natl Acad Sci U S A 2011.
  8. Carulli D, Buffo A, Strata P (April 2004). "Reparative mechanisms in the cerebellar cortex". Prog Neurobiol. 72 (6): 373–98. doi:10.1016/j.pneurobio.2004.03.007. PMID   15177783. S2CID   18644626.
  9. Grasselli G, Mandolesi G, Strata P, Cesare P (June 2011). "Impaired Sprouting and Axonal Atrophy in Cerebellar Climbing Fibres following In Vivo Silencing of the Growth-Associated Protein GAP-43". PLOS ONE. 6 (6): e20791. doi: 10.1371/journal.pone.0020791 . PMC   3112224 . PMID   21695168.
  10. Grasselli G, Strata P (February 2013). "Structural plasticity of climbing fibers and the growth-associated protein GAP-43". Front. Neural Circuits. 7 (25): 25. doi: 10.3389/fncir.2013.00025 . PMC   3578352 . PMID   23441024.
  11. Mascaro, Allegra; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, G.; Knott, G.W.; Huang, L.; De Paola, V.; et al. (2013). "In vivo single branch axotomyinduces GAP-43-dependent sprouting and synaptic remodeling in cerebellarcortex". Proc Natl Acad Sci U S A. 110 (26): 10824–10829. doi: 10.1073/pnas.1219256110 . PMC   3696745 . PMID   23754371.