Coal dust

Last updated

Coal dust is a fine-powdered form of coal which is created by the crushing, grinding, or pulverization of coal rock. Because of the brittle nature of coal, coal dust can be created by mining, transporting, or mechanically handling it.

Contents

Grinding or pulverizing coal to a dust form before combusting it improves the speed and efficiency of burning, which makes the coal easier to handle. However, coal dust is hazardous to workers if it is suspended in air outside the controlled environment of grinding and combustion equipment. It poses the acute hazard of forming an explosive mixture in air and the chronic hazard of causing pulmonary illness in people who inhale excessive quantities of it.

The distribution of the particle-size of coal dust is frequently measured in mesh. The British slang term for cheap fuel consisting of coal dust (slack) containing small lumps of coal (nuts) is nutty slack.

Energy generation

For use in thermal power plants, coal is ground into dust using a device called a powdered coal mill. [1] The resulting product, called powdered coal or pulverized coal, is then generally used in a fossil fuel power plant for electricity generation. Pulverized coal is a significant dust explosion hazard, as large quantities are suspended in air for transfer from the mill to the power plant. Explosions have occurred[ where? ][ example needed ] when the flow drops and flames in the burning chamber pass back along the ductwork delivering fuel.

Hazards

Coal dust is a fugitive combustible dust - a dust that is both a pollutant and combustible when dispersed into the air. [2] Due to the small particle size and combustible nature of this dust, there is a risk of an explosion and inhalation. The control of coal dust is difficult due to the coal dust being such a fine particle, allowing it to escape and be suspended in the air for a large amount of time. [3]

Dust explosion pentagon showing the needed elements for an explosion: Oxygen, Combustible dust, Dispersion of dust, Confinement of dust, and an Ignition Source. Dust Explosion Pentagon.svg
Dust explosion pentagon showing the needed elements for an explosion: Oxygen, Combustible dust, Dispersion of dust, Confinement of dust, and an Ignition Source.

Explosions

Stages of a coal dust explosion. Top, Beginning stage of a propagating coal dust explosion. Middle, The flame front appears behind the shock wave. Bottom, The cycle continues with the shock wave lifting coal dust and the lagging flame front igniting and propagating the explosion. Coal dust explosion schematic.svg
Stages of a coal dust explosion. Top, Beginning stage of a propagating coal dust explosion. Middle, The flame front appears behind the shock wave. Bottom, The cycle continues with the shock wave lifting coal dust and the lagging flame front igniting and propagating the explosion.
Le Petit Journal illustration of the Courrieres mine disaster Courrieres 1906 LeJ.jpg
Le Petit Journal illustration of the Courrières mine disaster
Coal miner spraying rock dust to mitigate coal dust in a mine. Coal miner spraying rock dust.jpg
Coal miner spraying rock dust to mitigate coal dust in a mine.

Coal dust suspended in air is explosive—coal dust has far more surface area per unit weight than lumps of coal, and is more susceptible to spontaneous combustion. However, five elements are needed for an explosion to occur: oxygen, an ignition source, coal dust, dispersion of the coal dust, and confinement of the dust. [4] For instance, a nearly empty coal store is a greater explosion risk than a full one. This is due to the increase of space in the store for oxygen and dispersion to take place.

The worst mining accidents in history have been caused by coal dust explosions, such as the disaster at Senghenydd in South Wales in 1913 in which 439 miners died, the Courrières mine disaster in Northern France which killed 1,099 miners in 1906, the Luisenthal Mine disaster in Germany, which claimed 299 lives in 1962, and the worst: the explosion at Benxihu Colliery, China, which killed 1,549 in 1942. Such accidents were usually initiated by firedamp ignitions, the shock wave of which raised coal dust from the floor of the mine galleries to make an explosive mixture. The problem was investigated by Michael Faraday and Charles Lyell at the colliery at Haswell County Durham of 1844, but their conclusions were ignored at the time. [5]

Inhalation

Coalworker's pneumoconiosis, or black lung disease, is caused by inhaling coal dust, typically dust produced in coal mining. Government agencies in the United States have set exposure limit guidelines for coal dust inhalation.

Prevention

For safe handling/storage of coal dust, the dust must be controlled, maintained, and protected properly. With the presence of coal dust within multiple industries, such as: mining, energy generation, and concrete production, different approaches are necessary. However, a common procedure to undergo is the three C's: contain, capture, and clean. [4] Following this procedure can help prevent unnecessary inhalation or explosions from occurring if following correctly.

United states

The Occupational Safety and Health Administration (OSHA) has set the legal limit (Permissible exposure limit) for coal dust exposure in the workplace as 2.4 mg/m3 (5% SiO2) over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a Recommended exposure limit (REL) of 1 mg/m3 (measured by MSHA) or 0.9 mg/m3 (measured by ISO/CEN/ACGIH) over an 8-hour workday. [6]

Hygiene

It is always the best practice to maintain a clean workplace and control any hazardous material, especially with a fugitive combustible dust such as coal dust. Many explosions from combustible dust are due to accumulation on walls, floors, and other surfaces. [7] The accumulation of uncontrolled coal dust in a workplace is a dangerous situation that needs to be eliminated. The control of coal dust can be improved by implementing the use of dust-approved vacuums, dust collection systems, methods to reduce fugitive coal dust, and following general housekeeping procedures. [2]

Explosions

To prevent explosions, it is best to promote and execute good hygiene practices in the workplace by controlling both the coal dust and any possible ignition sources. [2] Some ignition sources that may need to be controlled or used carefully around coal dust includes heavy machinery, electrical components, and open flames or sparks. [2] The main attempts at preventing explosions due to coal dust include using safety lamps, adding stone dust coffers to mine galleries to dilute the coal dust, watering workings and ensuring efficient ventilation of all the workings.

Another means of preventing explosions is by placing rock dust in the coal mine, which is usually pulverized limestone dust, which absorbs thermal energy from the heated gasses. Rock dusting has been used since the early 1900s, but there have been technological improvements since then. [8] Since then, NIOSH developed a Coal Dust Explosibility Meter (CDEM) to test the mixture between coal and rock dust in mines. [9] This field testing process allows miners to gauge the explosibility of their work environment.

See also

Related Research Articles

<span class="mw-page-title-main">National Institute for Occupational Safety and Health</span> US federal government agency for work-related health and safety

The National Institute for Occupational Safety and Health is the United States federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. NIOSH is part of the Centers for Disease Control and Prevention (CDC) within the U.S. Department of Health and Human Services. Despite its name, it is not part of either the National Institutes of Health nor OSHA. Its current director is John Howard.

<span class="mw-page-title-main">Occupational hygiene</span> Management of workplace health hazards

Occupational hygiene is the anticipation, recognition, evaluation, control, and confirmation (ARECC) of protection from risks associated with exposures to hazards in, or arising from, the workplace that may result in injury, illness, impairment, or affect the well-being of workers and members of the community. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists for understanding chemical hazards, physicists for physical hazards, and physicians and microbiologists for biological hazards. Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

The permissible exposure limit is a legal limit in the United States for exposure of an employee to a chemical substance or physical agent such as high level noise. Permissible exposure limits were established by the Occupational Safety and Health Administration (OSHA). Most of OSHA's PELs were issued shortly after adoption of the Occupational Safety and Health (OSH) Act in 1970.

<span class="mw-page-title-main">Chemical hazard</span> Non-biological hazards of hazardous materials

Chemical hazards are typical of hazardous chemicals and hazardous materials in general. Exposure to certain chemicals can cause acute or long-term adverse health effects. Chemical hazards are usually classified separately from biological hazards (biohazards). Main classifications of chemical hazards include asphyxiants, corrosives, irritants, sensitizers, carcinogens, mutagens, teratogens, reactants, and flammables. In the workplace, exposure to chemical hazards is a type of occupational hazard. The use of protective personal equipment (PPE) may substantially reduce the risk of damage from contact with hazardous materials.

<span class="mw-page-title-main">Emery (rock)</span> Metamorphic rock

Emery, or corundite, is a dark granular rock used to make an abrasive powder. It largely consists of corundum, mixed with other minerals such as the iron-bearing spinels, hercynite, and magnetite, and also rutile (titania). Industrial emery may contain a variety of other minerals and synthetic compounds such as magnesia, mullite, and silica.

<span class="mw-page-title-main">Sawdust</span> Byproduct or waste product of woodworking operations (sawing, sanding, milling, etc.)

Sawdust is a by-product or waste product of woodworking operations such as sawing, sanding, milling and routing. It is composed of very small chips of wood. These operations can be performed by woodworking machinery, portable power tools or by use of hand tools. In some manufacturing industries it can be a significant fire hazard and source of occupational dust exposure.

<span class="mw-page-title-main">Black lung disease</span> Human disease caused by long-term exposure to coal dust

Black lung disease (BLD), also known as coal-mine dust lung disease, or simply black lung, is an occupational type of pneumoconiosis caused by long-term inhalation and deposition of coal dust in the lungs and the consequent lung tissue's reaction to its presence. It is common in coal miners and others who work with coal. It is similar to both silicosis from inhaling silica dust and asbestosis from inhaling asbestos dust. Inhaled coal dust progressively builds up in the lungs and leads to inflammation, fibrosis, and in worse cases, necrosis.

<span class="mw-page-title-main">Occupational hazard</span> Hazard experienced in the workplace

An occupational hazard is a hazard experienced in the workplace. This encompasses many types of hazards, including chemical hazards, biological hazards (biohazards), psychosocial hazards, and physical hazards. In the United States, the National Institute for Occupational Safety and Health (NIOSH) conduct workplace investigations and research addressing workplace health and safety hazards resulting in guidelines. The Occupational Safety and Health Administration (OSHA) establishes enforceable standards to prevent workplace injuries and illnesses. In the EU, a similar role is taken by EU-OSHA.

Potassium nitrate is an oxidizer so storing it near fire hazards or reducing agents should be avoided to minimise risk in case of a fire.

<span class="mw-page-title-main">Combustibility and flammability</span> Ability to easily ignite in air at ambient temperatures

A combustible material is a material that can burn in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable material catches fire immediately on exposure to flame.

<span class="mw-page-title-main">Dust explosion</span> Rapid combustion of fine particles suspended in the air

A dust explosion is the rapid combustion of fine particles suspended in the air within an enclosed location. Dust explosions can occur where any dispersed powdered combustible material is present in high-enough concentrations in the atmosphere or other oxidizing gaseous medium, such as pure oxygen. In cases when fuel plays the role of a combustible material, the explosion is known as a fuel-air explosion.

Workplace health surveillance or occupational health surveillance (U.S.) is the ongoing systematic collection, analysis, and dissemination of exposure and health data on groups of workers. The Joint ILO/WHO Committee on Occupational Health at its 12th Session in 1995 defined an occupational health surveillance system as "a system which includes a functional capacity for data collection, analysis and dissemination linked to occupational health programmes".

<span class="mw-page-title-main">Physical hazard</span> Hazard due to a physical agent

A physical hazard is an agent, factor or circumstance that can cause harm with contact. They can be classified as type of occupational hazard or environmental hazard. Physical hazards include ergonomic hazards, radiation, heat and cold stress, vibration hazards, and noise hazards. Engineering controls are often used to mitigate physical hazards.

<span class="mw-page-title-main">Occupational safety and health</span> Field concerned with the safety, health and welfare of people at work

Occupational safety and health (OSH) or occupational health and safety (OHS), also known simply as occupational health or occupational safety, is a multidisciplinary field concerned with the safety, health, and welfare of people at work. These terms also refer to the goals of this field, so their use in the sense of this article was originally an abbreviation of occupational safety and health program/department etc. OSH is related to the fields of occupational medicine and occupational hygiene.

<span class="mw-page-title-main">Mine safety</span>

Mine safety is a broad term referring to the practice of controlling and managing a wide range of hazards associated with the life cycle of mining-related activities. Mine safety practice involves the implementation of recognised hazard controls and/or reduction of risks associated with mining activities to legally, socially and morally acceptable levels. While the fundamental principle of mine safety is to remove health and safety risks to mine workers, mining safety practice may also focus on the reduction of risks to plant (machinery) together with the structure and orebody of the mine.

<span class="mw-page-title-main">Workplace respirator testing</span> Testing of respirators in real life conditions

Respirators, also known as respiratory protective equipment (RPE) or respiratory protective devices (RPD), are used in some workplaces to protect workers from air contaminants. Initially, respirator effectiveness was tested in laboratories, but in the late 1960s it was found that these tests gave misleading results regarding the level of protection provided. In the 1970s, workplace-based respirator testing became routine in industrialized countries, leading to a dramatic reduction in the claimed efficacy of many respirator types and new guidelines on how to select the appropriate respirator for a given environment.

<span class="mw-page-title-main">Occupational dust exposure</span> Occupational hazard in agriculture, construction, forestry, and mining

Occupational dust exposure can occur in various settings, including agriculture, construction, forestry, and mining. Dust hazards include those that arise from handling grain and cotton, as well as from mining coal. Wood dust, commonly referred to as "sawdust", is another occupational dust hazard that can pose a risk to workers' health.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

<span class="mw-page-title-main">Federal Mines Safety Act of 1910</span> United States Federal Statute

Federal Mines Safety Act of 1910 was a United States statute passed for the purposes of establishing the United States Bureau of Mines as a federal agency of the United States Department of the Interior. The Act of Congress authorized investigations of mining methods with an emphasis regarding the safety of miners while recovering combustible fossil fuels and confronting occupational dust exposure.

Research on the health and safety hazards of 3D printing is new and in development due to the recent proliferation of 3D printing devices. In 2017, the European Agency for Safety and Health at Work has published a discussion paper on the processes and materials involved in 3D printing, potential implications of this technology for occupational safety and health and avenues for controlling potential hazards.

References

  1. "Powdered Coal Mill". Engineering Dictionary. EngNet.
  2. 1 2 3 4 "Hazard Alert: Combustible Dust Explosions" (PDF). OSHA. Retrieved 9 April 2023.
  3. "NIOSH Document: Technology News 515 - Float Coal Dust Explosion Hazards, Pub No.: 2006-125 | CDC/NIOSH". 2008-10-07. Archived from the original on 2008-10-07. Retrieved 2023-04-11.
  4. 1 2 "Dust Disaster". www.nfpa.org. Retrieved 2023-04-10.
  5. "Causes of accidental explosions in the 19th century". The Royal Institution. Retrieved 8 September 2020.
  6. "CDC – NIOSH Pocket Guide to Chemical Hazards – Coal dust". www.cdc.gov. Retrieved 2015-11-27.
  7. POWER (2013-01-01). "Controlling Fugitive Combustible Coal Dust". POWER Magazine. Retrieved 2023-04-10.
  8. Harteis, SP; Alexander, DW; Harris, ML; Sapko, M; Weiss, ES (2016-11-01). "Review of Rock Dusting Practices in Underground Coal Mines". U.S. National Institute for Occupational Safety and Health. Retrieved 2019-03-11.
  9. "Coal Dust Explosibility Meter Evaluation and Recommendations for Application" (PDF). Retrieved 9 April 2023.