Dust explosion

Last updated
Lab demonstration with burning lycopodium powder Staubexplosion.jpg
Lab demonstration with burning lycopodium powder

A dust explosion is the rapid combustion of fine particles suspended in the air within an enclosed location. Dust explosions can occur where any dispersed powdered combustible material is present in high-enough concentrations in the atmosphere or other oxidizing gaseous medium, such as pure oxygen. In cases when fuel plays the role of a combustible material, the explosion is known as a fuel-air explosion.

Contents

Dust explosions are a frequent hazard in coal mines, grain elevators and silos, and other industrial environments. They are also commonly used by special effects artists, filmmakers, and pyrotechnicians, given their spectacular appearance and ability to be safely contained under certain carefully controlled conditions.

Thermobaric weapons exploit this principle by rapidly saturating an area with an easily combustible material and then igniting it to produce explosive force. These weapons are the most powerful non-nuclear weapons in existence. [1]

Terminology

If rapid combustion occurs in a confined space, enormous overpressures can build up, causing major structural damage and flying debris. The sudden release of energy from a "detonation" can produce a shockwave, either in open air or in a confined space. If the spread of flame is at subsonic speed, the phenomenon is sometimes called a "deflagration", although looser usage calls both phenomena "explosions".

Dust explosions may be classified as being either "primary" or "secondary" in nature. Primary dust explosions may occur inside process equipment or similar enclosures, and are generally controlled by pressure relief through purpose-built ducting to the external atmosphere. Secondary dust explosions are the result of dust accumulation inside a building being disturbed and ignited by the primary explosion, resulting in a much more dangerous uncontrolled explosion that can affect the entire structure. Historically, fatalities from dust explosions have largely been the result of secondary dust explosions. [2]

Conditions required

Diagram showing the five requirements for a dust explosion Dust explosion pentagon simple.png
Diagram showing the five requirements for a dust explosion

There are five necessary conditions for a dust explosion: [3]

  1. A combustible dust
  2. The dust is dispersed in the air within certain flammability limits
  3. There is an oxidant (typically atmospheric oxygen)
  4. There is an ignition source
  5. The area is confined a building can be an enclosure

Sources of dust

1878 stereograph rendering of the Great Mill Disaster Washburnamill.jpg
1878 stereograph rendering of the Great Mill Disaster
Mount Mulligan mine disaster in Australia 1921. These cable drums were blown 50 feet (15 m) from their foundations following a coal dust explosion. MountMulligan.jpg
Mount Mulligan mine disaster in Australia 1921. These cable drums were blown 50 feet (15 m) from their foundations following a coal dust explosion.
Aftermath of 2008 explosion at Imperial Sugar in Port Wentworth, Georgia, US Imperial Sugar Georgia Two.jpg
Aftermath of 2008 explosion at Imperial Sugar in Port Wentworth, Georgia, US

Many common materials which are known to burn can generate a dust explosion, such as coal dust and sawdust. In addition, many otherwise mundane organic materials can also be dispersed into a dangerous dust cloud, such as grain, flour, starch, sugar, powdered milk, cocoa, coffee, and pollen. Powdered metals (such as aluminum, magnesium, and titanium) can form explosive suspensions in air, if finely divided.

A gigantic explosion of flour dust destroyed a mill in Minnesota on May 2, 1878, killing 14 workers at the Washburn A Mill and another four in adjacent buildings. [4] A similar problem occurs in sawmills and other places dedicated to woodworking.

Since the advent of industrial production–scale metal powder–based additive manufacturing (AM) in the 2010s, there is growing need for more information and experience with preventing dust explosions and fires from the traces of excess metal powder sometimes left over after laser sintering or other fusion methods. [5] For example, in machining operations downstream of the AM build, excess powder liberated from porosities in the support structures can be exposed to sparks from the cutting interface. [5] Efforts are underway not only to build this knowledgebase within the industry but also to share it with local fire departments, who do periodic fire-safety inspections of businesses in their districts and who can expect to answer alarms at shops or plants where AM is now part of the production mix. [5]

Although not strictly a dust, paper particles emitted during processing – especially rolling, unrolling, calendaring/slitting, and sheet-cutting – are also known to pose an explosion hazard. Enclosed paper mill areas subject to such dangers commonly maintain very high air humidities to reduce the chance of airborne paper dust explosions.

In special effects pyrotechnics, lycopodium powder [2] and non-dairy creamer [6] are two common means of producing safe, controlled fire effects.

To support rapid combustion, the dust must consist of very small particles with a high surface area to volume ratio, thereby making the collective or combined surface area of all the particles very large in comparison to a dust of larger particles. Dust is defined as powders with particles less than about 500 micrometres in diameter, but finer dust will present a much greater hazard than coarse particles by virtue of the larger total surface area of all the particles.

Concentration

Below a certain value, the lower explosive limit (LEL), there is insufficient dust to support the combustion at the rate required for an explosion. [7] A combustible concentration at or below 25% of the LEL is considered safe. [8] Similarly, if the fuel to air ratio increases above the upper explosive limit (UEL), there is insufficient oxidant to permit combustion to continue at the necessary rate.

Determining the minimum explosive concentration or maximum explosive concentration of dusts in air is difficult, and consulting different sources can lead to quite different results. Typical explosive ranges in air are from few dozens grams/m3 for the minimum limit, to few kg/m3 for the maximum limit. For example, the LEL for sawdust has been determined to be between 40 and 50 grams/m3. [9] It depends on many factors including the type of material used.

Oxidant

Typically, normal atmospheric oxygen can be sufficient to support a dust explosion if the other necessary conditions are also present. High-oxygen or pure oxygen environments are considered to be especially hazardous, as are strong oxidizing gases such as chlorine and fluorine. Also, particulate suspensions of compounds with a high oxidative potential, such as peroxides, chlorates, nitrates, perchlorates, and dichromates, can increase risk of an explosion if combustible materials are also present.

Sources of ignition

There are many sources of ignition, and a naked flame need not be the only one: over one half of the dust explosions in Germany in 2005 were from non-flame sources. [7] Common sources of ignition include:

However, it is often difficult to determine the exact source of ignition when investigating after an explosion. When a source cannot be found, ignition will often be attributed to static electricity. Static charges can be generated by external sources, or can be internally generated by friction at the surfaces of particles themselves as they collide or move past one another.

Mechanism

Dusts have a very large surface area compared to their mass. Since burning can only occur at the surface of a solid or liquid, where it can react with oxygen, this causes dusts to be much more flammable than bulk materials. For example, a 1 kilogram (2.2 lb) sphere of a combustible material with a density of 1 g/cm3 would be about 12.4 centimetres (4.9 in) in diameter, and have a surface area of 0.048 square metres (0.52 sq ft). However, if it were broken up into spherical dust particles 50 µm in diameter (about the size of flour particles) it would have a surface area of 120 square metres (1,300 sq ft). This greatly-increased surface area allows the material to burn much faster, and the extremely small mass of each particle allows them to catch on fire with much less energy than the bulk material, as there is no heat loss to conduction within the material.

When this mixture of fuel and air is ignited, especially in a confined space such as a warehouse or silo, a significant increase in pressure is created, often more than sufficient to demolish the structure. Even materials that are traditionally thought of as nonflammable (such as aluminum), or slow burning (such as wood), can produce a powerful explosion when finely divided, and can be ignited by even a small spark.

Effects

A dust explosion can cause major damage to structures, equipment, and personnel from violent overpressure or shockwave effects. Flying objects and debris can cause further damage. Intense radiant heat from a fireball can ignite the surroundings, or cause severe skin burns in unprotected persons. In a tightly enclosed space, the sudden depletion of oxygen can cause asphyxiation. Where the dust is carbon based (such as in a coal mine), incomplete combustion may cause large amounts of carbon monoxide (the miners' after-damp) to be created. This can cause more deaths than the original explosion as well as hindering rescue attempts. [10] [11]

Protection and mitigation

This American poster during World War I warned about grain dust explosions "Save Lives, Save Food- Save Property. Prevent Dust Explosions...Keep your mill and elevator free from dust and dirt.... - NARA - 512690.tif
This American poster during World War I warned about grain dust explosions

Much research has been carried out in Europe and elsewhere to understand how to control these dangers, but dust explosions still occur. The alternatives for making processes and plants safer depend on the industry.

In the coal mining industry, a methane explosion can initiate a coal dust explosion, which can then engulf an entire mine pit. As a precaution, incombustible stone dust may be spread along mine roadways, or stored in trays hanging from the roof, to dilute the coal dust stirred up by a shockwave to the point where it cannot burn. Mines may also be sprayed with water to inhibit ignition.

Some industries exclude oxygen from dust-raising processes, a precaution known as "inerting". Typically this uses nitrogen, carbon dioxide, or argon, which are incombustible gases which can displace oxygen. The same method is also used in large storage tanks where flammable vapors can accumulate. However, use of oxygen-free gases brings a risk of asphyxiation of the workers. Workers who need illumination in enclosed spaces where a dust explosion is a high risk often use lamps designed for underwater divers, as they have no risk of producing an open spark due to their sealed waterproof design.

Good housekeeping practices, such as eliminating build-up of combustible dust deposits that could be disturbed and lead to a secondary explosion, also help mitigate the problem.

Best engineering control measures which can be found in the National Fire Protection Association (NFPA) Combustible Dust Standards [12] include:

Notable incidents

Dust clouds are a common source of explosions, causing an estimated 2,000 explosions annually in Europe. [13] The table lists notable incidents worldwide.

EventDateLocationCountrySource materialFatalitiesInjuriesNotes
Tradeston Flour Mills explosion July 9, 1872 Glasgow, Scotland Flag of the United Kingdom.svg  United Kingdom grain dust1816Destroyed the mill building and damaged surrounding buildings, and started a fire that killed others. The investigation into the explosion was published across Europe and the Americas.
Great Mill Disaster May 2, 1878 Minneapolis, Minnesota Flag of the United States (1877-1890).svg  United States grain dust18Destroyed the largest grain mill in the world and leveled five other mills, effectively reducing the milling capacity of Minneapolis by one-third to one-half. Prompted mills throughout the country to install better ventilation systems to prevent dust build-up.
Husted Mill and Elevator DisasterJune 24, 1913 Buffalo, New York Flag of the United States (1912-1959).svg United States grain dust3380This workday afternoon explosion destroyed a grain elevator and mill complex. The engineer of a passing railroad switch engine was blown from the cab and died. Windows of a passing Nickel Plate Road passenger train were broken, but no passengers were injured. [14] [15]
Milwaukee Works explosionMay 20, 1919 Milwaukee, Wisconsin Flag of the United States.svg  United States Feed grinding plant34The blast was felt for miles around and completely leveled the plant owned by the company.
Douglas Starch Works explosionMay 22, 1919 Cedar Rapids, Iowa Flag of the United States (1912-1959).svg  United States corn starch 4330The blast was felt for miles around and completely leveled the plant owned by the company.
Port Colborne explosion August 9, 1919 Port Colborne Canadian Red Ensign (1868-1921).svg  Canada grain1016Blast also destroyed the steamer Quebec, which was near the grain elevator
Large terminal grain elevator in Kansas CitySeptember 13, 1919 Kansas City, Missouri Flag of the United States (1912-1959).svg  United States 1410Originated in basement of elevator, during a cleanup period, and travelled up through the elevator shaft
Mount Mulligan mine disaster September 19, 1921 Mount Mulligan, Queensland Flag of Australia (converted).svg  Australia coal dust 75The series of coal dust explosions within a mine rocked the close-knit township and was audible as far as 30 kilometres (19 mi) away.
Benxihu Colliery explosion April 26, 1942 Benxi, Liaoning Flag of Manchukuo.svg  Manchukuo (now China)coal dust and gas1,54934% of the miners working that day were killed. This is the world's worst-ever coal-mining accident.
Pillsbury Explosion and FireJanuary 2, 1972 Buffalo, New York Flag of the United States.svg United States wheat flour 38New Year's weekend explosion at what was then the world's biggest flour mill. The blast occurred in a series of 500-foot-long, 10-story-tall concrete-and-steel bulk flour storage bins. Repairs took a year to complete. [16]
Westwego grain elevator explosion December 22, 1977 Westwego, Louisiana Flag of the United States.svg  United States grain dust3613 [17]
Galveston grain elevator explosionDecember 27, 1977 Galveston, Texas Flag of the United States.svg  United States grain dust20 [17]
Bird's Custard factory explosion November 18, 1981 Banbury Flag of the United Kingdom.svg  United Kingdom corn starch 9 [13] [18]
Metz malt factory explosionOctober 18, 1982 Metz Flag of France.svg  France barley dust121 [19]
Ingeniero White Silo Nº 5 explosion13 March 1985 Ingeniero White Flag of Argentina.svg  Argentina grain dust22 [20]
Harbin textile factory explosionMarch 17, 1987 Harbin Flag of the People's Republic of China.svg  China flax dust58177 [21]
Sukhodilska–Skhidna coal mine accidentJune 9, 1992 Sukhodilsk Flag of Ukraine.svg  Ukraine coal dust and firedamp 6337 [22] [23]
Blaye grain explosionAugust 1997 Blaye Flag of France.svg  France grain dust111Explosion in a grain storage facility at the Société d’Exploitation Maritime Blayaise killed 11 people in nearby offices and injured one. [13]
Debruce elevator explosionJune 1998 Wichita, Kansas Flag of the United States.svg  United States grain dust710Multiple explosions occurred in what was then the world's largest grain elevator. Dust collection systems were not properly maintained. [24]
West Pharmaceutical Services explosion January 29, 2003 Kinston, North Carolina Flag of the United States.svg  United States polyethylene dust638
Imperial Sugar explosion February 7, 2008 Port Wentworth, Georgia Flag of the United States.svg  United States sugar dust1442 [13]
2014 Kunshan explosion August 2, 2014 Kunshan Flag of the People's Republic of China.svg  China metal powder146114
Formosa Fun Coast explosion June 27, 2015 New Taipei Flag of the Republic of China.svg  Taiwan colored starch powder15498Explosion when Holi-like colored powder was released at an outdoor music and color festival at the Formosa Fun Coast.
Bosley wood flour mill explosionJuly 17, 2015 Bosley, Cheshire Flag of the United Kingdom.svg  United Kingdom wood flour 44 [25] [26]

See also

Related Research Articles

<span class="mw-page-title-main">Explosive</span> Substance that can explode

An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.

<span class="mw-page-title-main">Ammonium perchlorate</span> Chemical compound

Ammonium perchlorate ("AP") is an inorganic compound with the formula NH4ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propellant called ammonium perchlorate composite propellant. Its instability has involved it in a number of accidents, such as the PEPCON disaster.

<span class="mw-page-title-main">Static electricity</span> Imbalance of electric charges within or on the surface of a material

Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it is able to move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor.

Coal dust is a fine-powdered form of coal which is created by the crushing, grinding, or pulverization of coal rock. Because of the brittle nature of coal, coal dust can be created by mining, transporting, or mechanically handling it.

<span class="mw-page-title-main">Backdraft</span> Rapid or explosive burning of superheated gasses in a fire

A backdraft or backdraught is the abrupt burning of superheated gases in a fire caused when oxygen rapidly enters a hot, oxygen-depleted environment; for example, when a window or door to an enclosed space is opened or broken. Backdrafts are typically seen as a blast of smoke and/or flame out of an opening of a building. Backdrafts present a serious threat to firefighters. There is some debate concerning whether backdrafts should be considered a type of flashover.

<span class="mw-page-title-main">Fire triangle</span> Model for understanding the ingredients for fires

The fire triangle or combustion triangle is a simple model for understanding the necessary ingredients for most fires.

<span class="mw-page-title-main">Sawdust</span> Byproduct or waste product of woodworking operations (sawing, sanding, milling, etc.)

Sawdust is a by-product or waste product of woodworking operations such as sawing, sanding, milling and routing. It is composed of very small chips of wood. These operations can be performed by woodworking machinery, portable power tools or by use of hand tools. In some manufacturing industries it can be a significant fire hazard and source of occupational dust exposure.

A flash fire is a sudden, intense fire caused by ignition of a mixture of air and a dispersed flammable substance such as a solid, flammable or combustible liquid, or a flammable gas. It is characterized by high temperature, short duration, and a rapidly moving flame front.

<span class="mw-page-title-main">Electrical equipment in hazardous areas</span> Electrical equipment in places where fire or explosion hazards may exist

In electrical and safety engineering, hazardous locations are places where fire or explosion hazards may exist. Sources of such hazards include gases, vapors, dust, fibers, and flyings, which are combustible or flammable. Electrical equipment installed in such locations can provide an ignition source, due to electrical arcing, or high temperatures. Standards and regulations exist to identify such locations, classify the hazards, and design equipment for safe use in such locations.

Mixtures of dispersed combustible materials and oxygen in the air will burn only if the fuel concentration lies within well-defined lower and upper bounds determined experimentally, referred to as flammability limits or explosive limits. Combustion can range in violence from deflagration through detonation.

<span class="mw-page-title-main">ATEX directive</span> EU ATEX Directive on workplaces with an explosive atmosphere

The ATEX directives are two EU directives describing the minimum safety requirements for workplaces and equipment used in explosive atmospheres. The name is an initialization of the term ATmosphères EXplosibles.

<span class="mw-page-title-main">Hazardous Materials Identification System</span> Numerical hazard rating using colour coded labels

The Hazardous Materials Identification System (HMIS) is a numerical hazard rating that incorporates the use of labels with color developed by the American Coatings Association as a compliance aid for the OSHA Hazard Communication (HazCom) Standard.

<span class="mw-page-title-main">Combustibility and flammability</span> Ability to easily ignite in air at ambient temperatures

A combustible material is a material that can burn in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable material catches fire immediately on exposure to flame.

<span class="mw-page-title-main">West Pharmaceutical Services explosion</span> U.S. industrial disaster

The West Pharmaceutical Plant explosion was an industrial disaster that occurred on January 29, 2003 at the West Pharmaceutical Plant in Kinston, North Carolina, United States. Six people were killed and thirty-six people were injured when a large explosion ripped through the facility. Two firefighters were injured in the subsequent blaze. The disaster occurred twelve years and 170 miles (270 km) from the 1991 Hamlet chicken processing plant fire, North Carolina's second-worst industrial disaster.

<span class="mw-page-title-main">Explosion</span> Sudden release of heat and gas

An explosion is a rapid expansion in volume of a given amount of matter associated with an extreme outward release of energy, usually with the generation of high temperatures and release of high-pressure gases. Explosions may also be generated by a slower expansion that would normally not be forceful, but is not allowed to expand, so that when whatever is containing the expansion is broken by the pressure that builds as the matter inside tries to expand, the matter expands forcefully. An example of this is a volcanic eruption created by the expansion of magma in a magma chamber as it rises to the surface. Supersonic explosions created by high explosives are known as detonations and travel through shock waves. Subsonic explosions are created by low explosives through a slower combustion process known as deflagration.

Oxygen compatibility is the issue of compatibility of materials for service in high concentrations of oxygen. It is a critical issue in space, aircraft, medical, underwater diving and industrial applications. Aspects include effects of increased oxygen concentration on the ignition and burning of materials and components exposed to these concentrations in service.

<span class="mw-page-title-main">Powder</span> Dry, bulk solid composed of fine, free-flowing particles

A powder is a dry, bulk solid composed of many very fine particles that may flow freely when shaken or tilted. Powders are a special sub-class of granular materials, although the terms powder and granular are sometimes used to distinguish separate classes of material. In particular, powders refer to those granular materials that have the finer grain sizes, and that therefore have a greater tendency to form clumps when flowing. Granulars refer to the coarser granular materials that do not tend to form clumps except when wet.

A spark extinguishing system is used for preventive fire protection. A spark extinguishing system can detect and eliminate ignition sources before a fire or dust explosion occurs. Systems for grinding, chopping, drying, cooling and pressing materials including their pneumatic or mechanical transport and extraction systems and facilities for separation or storage purposes, also dust collectors, filters, cyclones, silos, and hoppers are especially at risk.

In fire and explosion prevention engineering, purging refers to the introduction of an inert purge gas into a closed system to prevent the formation of an ignitable atmosphere. Purging relies on the principle that a combustible gas is able to undergo combustion (explode) only if mixed with air in the right proportions. The flammability limits of the gas define those proportions, i.e. the ignitable range.

In fire and explosion prevention engineering, inerting refers to the introduction of an inert (non-combustible) gas into a closed system to make a flammable atmosphere oxygen deficient and non-ignitable.

References

  1. Harding, Luke (2007-09-11). "Russia unveils the 'father of all bombs'". The Guardian. ISSN   0261-3077 . Retrieved 2019-01-19.
  2. 1 2 Eckhoff, Rolf K. (1997). Dust Explosions in the Process Industries (2nd ed.). Butterworth-Heinemann. ISBN   0-7506-3270-4.
  3. "OSHA Fact Sheet: Hazard Alert: Combustible Dust Explosions" (PDF). osha.gov. Archived from the original (PDF) on 2020-11-01. Retrieved 2018-01-23.
  4. Nathanson, Iric. The 1878 Washburn A Mill Explosion. Archived from the original on 2014-04-08. Retrieved 2014-04-08.
  5. 1 2 3 Simpson, Timothy W. (2017-08-17), "Will My AM Part Explode? Not if you're careful. Parts built from metallic powder require extra precautions", Modern Machine Shop .
  6. "Detonation Films – Why Coffee Creamer?" . Retrieved March 20, 2011.
  7. 1 2 "Dust explosion protection" (PDF). bartec.de. 2005. Archived from the original (PDF) on 2006-12-10.
  8. NFPA 69 8.3.1
  9. "Dust explosion concentration – Physical meaning and use in risk assessment of powder minimum explosive concentration (MEC)". PowderProcess.net.
  10. Murray, Charles Edward Robertson; Wilberforce, Daniel; Ritchie, David (1903), "Mount Kembla Colliery Disaster 31 July 1902 – Report of the Royal Commission, together with minutes of evidence and exhibits", Historical and Cultural Collections – Publications, New South Wales Legislative Assembly: xxxvi, retrieved 19 May 2019
  11. Roberts, H C W (September 1952), Report on the causes of, and circumstances attending, the explosion which occurred at Easington Colliery, County Durham, on the 29th May, 1951., Cmd 8646, London: Her Majesty's Stationery Office, pp. 9, 39–40, hdl:1842/5365
  12. "List of NFPA Codes & Standards". NFPA.org.
  13. 1 2 3 4 Hought, Julian (28 February 2011). "Dust to Dust" . Retrieved 2015-07-02.
  14. "Buffalo, NY Grain Elevator Explosion, June 1913 | GenDisasters ... Genealogy in Tragedy, Disasters, Fires, Floods Page 1". www.gendisasters.com. Retrieved 2022-02-28.
  15. Henry H., Baxter (1980). Grain Elevators (PDF). Buffalo, NY: Buffalo and Erie County Historical Society. p. 14.
  16. "1 Dead, 2 Lost as Blast in Buffalo Rips World's Biggest Flour Mill". The New York Times. 1972-01-03. ISSN   0362-4331 . Retrieved 2022-02-28.
  17. 1 2 "Explosion suits settled". The Day. New London, Connecticut. 24 April 1980. p. 26.
  18. "Corn Starch Dust Explosion at General Foods Ltd, Banbury, Oxfordshire – 18th November 1981". Great Britain: January 1983. Occupational Health & Safety Information Service, UK. ISBN   0-11-883673-0
  19. Explosion dans un silo d'une malterie (in French)
  20. "En un emotivo acto presentaron el documental "Elevador 5 – 35 años"". La Nueva (in Spanish). 13 March 2020. Retrieved 17 November 2021.
  21. "47 Die, 179 Injured in Blast at Linen Mill in Northeast China". Los Angeles Times. March 17, 1987. Retrieved 2015-07-02.
  22. "Взрыв на шахте «Суходольская-Восточная»". 25 March 2016.
  23. "Самые масштабные аварии на шахтах за годы независимой Украины". 2 March 2017.
  24. OSHA report on the Debruce explosion
  25. "Bosley explosion: Four missing in Wood Flour Mills blast". BBC News . July 17, 2015. Retrieved 2015-12-02.
  26. Pilling, Kim (July 27, 2015). "Bosley Wood flour mill explosion: Fourth body found in wreckage of building gutted by blast". Mirror Online . Retrieved 2015-12-02.

Incidents in France and the US:

Protecting process plant, grain handling facilities, etc. from the risk of dust hazard explosions: