Cold foil printing

Last updated

Cold foil printing, also known as cold foil stamping, is a modern method of printing metallic foil on a substrate in order to enhance the aesthetic of the final product. Cold foil printing can be done two ways: the older dry lamination process common in the offset printing industry, or the newer, more versatile wet lamination process, which is dominant in the flexo label industry.

Contents

How it works

Cold foil dry lamination

Using a standard printing plate, an image is printed onto a substrate with the use of an ultraviolet-curable cold foil adhesive. An ultraviolet dryer then cures the adhesive, which becomes tacky. Foil spools from an unwind and is nipped to a substrate. Foil sticks to the tacky adhesive on the substrate, and an image with a bright foil surface is created. [1] Foil that does not adhere to the adhesive remains on a thin polyester liner, and waste is directed to a rewind spool. Because the adhesive is applied on press like a conventional ink, no expensive stamping die has to be created. [2]

Once printed, the surface of cold foil images may be varnished, laminated, or encapsulated in order to provide a hard-wearing, durable surface. [3]

Substrates

Some printing substrates are unsuitable for cold foil transfer. The best results are obtained on glossy coated papers and papers with a smooth surface. Weights from about 80 to 500 g/m^2 are possible. [4]

Benefits

The process does not require stamping tools, but instead uses printing plates, which are cheaper and can be made in a few hours. In contrast, delivery time for an engraved or etched stamping tool can be up to two weeks. More importantly for the designer, gradients and halftone images can be introduced. [5]

History

Hot foil stamping

Cold foil evolved from hot foil stamping. Hot foil stamping is mostly used offline when foil is required on a preprinted substrate, such as in the manufacture of greeting cards and special occasion ribbons. Hot foil is economical but very slow. The types of graphics that can be applied are usually limited to text and bold images. Hot foil is not usable with heat-sensitive substrates such as polyethylene, vinyl, or shrink film. [1]

In-line cold foil printer In-Line-Cold-Foil-Printer-Indexer.jpg
In-line cold foil printer

Cold foil evolution

Cold foil takes the idea of hot foil stamping and makes it more convenient and cost-effective. The cold foil functions like an additional ink and is actually a UV-curable, very fast lamination adhesive and can be bonded in-line in a single run using a printing plate for either flexographic web printing or offset sheet-fed printing. It can be applied precisely with high resolution, even for fine structures such as raster gradients and thin lines. Typeface is legible from about 5 points upwards and has excellent edge definition. Cold foil printing needs smooth surface substrates for excellent image quality. [4]

Cold foil indexing

As the cold foil market evolves, major players in the printing industry are finding ways to make the process even more cost-effective. By indexing cold foil, printers can reduce foil waste, reduce their presses' downtime, and in turn maximize their presses' efficiency. [6]

Uses

Cold foil is most commonly used on products that call for a strong "shelf appeal", such as household consumables, cigarette cartons, wine labels, and cosmetic packaging. [1] It provides a luxurious metallic look on higher added-value label applications. [3]

Related Research Articles

<span class="mw-page-title-main">Screen printing</span> Printing technique

Screen printing is a printing technique where a mesh is used to transfer ink onto a substrate, except in areas made impermeable to the ink by a blocking stencil. A blade or squeegee is moved across the screen to fill the open mesh apertures with ink, and a reverse stroke then causes the screen to touch the substrate momentarily along a line of contact. This causes the ink to wet the substrate and be pulled out of the mesh apertures as the screen springs back after the blade has passed. One colour is printed at a time, so several screens can be used to produce a multi-coloured image or design.

<span class="mw-page-title-main">Printed circuit board</span> Board to support and connect electronic components

A printed circuit board (PCB), also called printed wiring board (PWB), is a medium used to connect or "wire" components to one another in a circuit. It takes the form of a laminated sandwich structure of conductive and insulating layers: each of the conductive layers is designed with an artwork pattern of traces, planes and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Electrical components may be fixed to conductive pads on the outer layers in the shape designed to accept the component's terminals, generally by means of soldering, to both electrically connect and mechanically fasten them to it. Another manufacturing process adds vias, plated-through holes that allow interconnections between layers.

<span class="mw-page-title-main">Flexography</span> Form of printing process

Flexography is a form of printing process which utilizes a flexible relief plate. It is essentially a modern version of letterpress, evolved with high speed rotary functionality, which can be used for printing on almost any type of substrate, including plastic, metallic films, cellophane, and paper. It is widely used for printing on the non-porous substrates required for various types of food packaging.

<span class="mw-page-title-main">Flexible electronics</span> Mounting of electronic devices on flexible plastic substrates

Flexible electronics, also known as flex circuits, is a technology for assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as polyimide, PEEK or transparent conductive polyester film. Additionally, flex circuits can be screen printed silver circuits on polyester. Flexible electronic assemblies may be manufactured using identical components used for rigid printed circuit boards, allowing the board to conform to a desired shape, or to flex during its use.

<span class="mw-page-title-main">Decal</span> Pattern or image that can be moved to another surface upon contact

A decal or transfer is a plastic, cloth, paper, or ceramic substrate that has printed on it a pattern or image that can be moved to another surface upon contact, usually with the aid of heat or water.

<span class="mw-page-title-main">Paper embossing</span> Process of creating either raised or recessed relief images and designs in paper and other materials

Embossing and debossing are the processes of creating either raised or recessed relief images and designs in paper and other materials. An embossed pattern is raised against the background, while a debossed pattern is sunken into the surface of the material but might protrude somewhat on the reverse side.

<span class="mw-page-title-main">Rotary printing press</span> Printing method

A rotary printing press is a printing press in which the images to be printed are curved around a cylinder. Printing can be done on various substrates, including paper, cardboard, and plastic. Substrates can be sheet feed or unwound on a continuous roll through the press to be printed and further modified if required. Printing presses that use continuous rolls are sometimes referred to as "web presses".

<span class="mw-page-title-main">Digital printing</span> Method of printing

Digital printing is a method of printing from a digital-based image directly to a variety of media. It usually refers to professional printing where small-run jobs from desktop publishing and other digital sources are printed using large-format and/or high-volume laser or inkjet printers.

<span class="mw-page-title-main">Offset printing</span> Printing technique

Offset printing is a common printing technique in which the inked image is transferred from a plate to a rubber blanket and then to the printing surface. When used in combination with the lithographic process, which is based on the repulsion of oil and water, the offset technique employs a flat (planographic) image carrier. Ink rollers transfer ink to the image areas of the image carrier, while a water roller applies a water-based film to the non-image areas.

<span class="mw-page-title-main">Security printing</span> Field of the printing industry for banknotes and other security products

Security printing is the field of the printing industry that deals with the printing of items such as banknotes, cheques, passports, tamper-evident labels, security tapes, product authentication, stock certificates, postage stamps and identity cards. The main goal of security printing is to prevent forgery, tampering, or counterfeiting. More recently many of the techniques used to protect these high-value documents have become more available to commercial printers, whether they are using the more traditional offset and flexographic presses or the newer digital platforms. Businesses are protecting their lesser-value documents such as transcripts, coupons and prescription pads by incorporating some of the features listed below to ensure that they cannot be forged or that alteration of the data cannot occur undetected.

<span class="mw-page-title-main">Letterpress printing</span> Technique of relief printing using a printing press

Letterpress printing is a technique of relief printing for producing many copies by repeated direct impression of an inked, raised surface against individual sheets of paper or a continuous roll of paper. A worker composes and locks movable type into the "bed" or "chase" of a press, inks it, and presses paper against it to transfer the ink from the type, which creates an impression on the paper.

<span class="mw-page-title-main">Rotogravure</span> Printing process

Rotogravure is a type of intaglio printing process, which involves engraving the image onto an image carrier. In gravure printing, the image is engraved onto a cylinder because, like offset printing and flexography, it uses a rotary printing press.

Photoengraving is a process that uses a light-sensitive photoresist applied to the surface to be engraved to create a mask that protects some areas during a subsequent operation which etches, dissolves, or otherwise removes some or all of the material from the unshielded areas of a substrate. Normally applied to metal, it can also be used on glass, plastic and other materials.

<span class="mw-page-title-main">Label</span> Material affixed to a container or article with printed information

A label is a piece of paper, plastic film, cloth, metal, or other material affixed to a container or product, on which is written or printed information or symbols about the product or item. Information printed directly on a container or article can also be considered labelling.

<span class="mw-page-title-main">Compact Disc manufacturing</span> Mass replication process for CDs

Compact disc manufacturing is the process by which commercial compact discs (CDs) are replicated in mass quantities using a master version created from a source recording. This may be either in audio form (CD-DA) or data form (CD-ROM). This process is used in the mastering of read-only compact discs. DVDs and Blu-rays use similar methods.

A UV coating is a surface treatment which either is cured by ultraviolet radiation, or which protects the underlying material from such radiation's harmful effects. They have come to the fore because they are considered environmentally friendly and do not use solvents or produce volatile organic compounds (VOCs), or Hazardous Air Pollutant (HAPs), although some materials used for UV coating, such as PVDF in smart phones and tablets, are known to contain substances harmful to both humans and the environment.

<span class="mw-page-title-main">Pressure-sensitive adhesive</span> Type of non reactive adhesive

Pressure-sensitive adhesive is a type of nonreactive adhesive which forms a bond when pressure is applied to bond the adhesive with a surface. No solvent, water, or heat is needed to activate the adhesive. It is used in pressure-sensitive tapes, labels, glue dots, stickers, sticky note pads, automobile trim, and a wide variety of other products.

<span class="mw-page-title-main">Pad printing</span> Technique used for printing images onto 3D surfaces

Pad printing is a printing process that can transfer a 2-D image onto a 3-D object. This is accomplished using an indirect offset (gravure) printing process that involves an image being transferred from the cliché via a silicone pad onto a substrate. Pad printing is used for printing on otherwise difficult to print on products in many industries including medical, automotive, promotional, apparel, and electronic objects, as well as appliances, sports equipment and toys. It can also be used to deposit functional materials such as conductive inks, adhesives, dyes and lubricants.

<span class="mw-page-title-main">Hot stamping</span> Method of relief printing

Hot stamping or foil stamping is a printing method of relief printing in which pre-dried ink or foils are transferred to a surface at high temperatures. The method has diversified since its rise to prominence in the 19th century to include a variety of processes. After the 1970s, hot stamping became one of the most important methods of decoration on the surface of plastic products.

A diffractive optically variable image device (DOVID) is a type of optical variable device; a security feature based on visual effects created by diffraction. DOVIDs are incorporated in government-issued documents of value to increase their counterfeit resistance. Brand protection is another application of DOVIDs. DOVIDs contain micro- or nanostructures in the form of diffractive gratings. Due to these structures, they exhibit optically variable effects such as dynamic chromatic, holographic, and kinematic effects, two- or three-dimensional images or color-changing effects, which ideally are easily recognized, but are difficult to reproduce. Well known examples of DOVIDs are holograms such as 2D or 3D or 2D/3D holograms based on mask illumination, dot matrix or e-beam origination technology and Kinegrams.

References

  1. 1 2 3 Rivera, J Michael (2004). Cold Foil for Dummies. Indianapolis, Indiana: Wiley Publishing, Inc. p. 1.
  2. McCue, Claudia (2013). Real World Print Production with Adobe Creative Cloud. Peachpit Press. ISBN   978-0321970329.
  3. 1 2 Kirwan, Mark (2012). Handbook of Paper and Paperboard Packaging Technology. John Wiley & Sons, Ltd. doi:10.1002/9781118470930. ISBN   9781118470930.
  4. 1 2 Beckmann, Till (2009). Extra: Encyclopedia of Experimental Print Finishing. Birkhauser Architecture. ISBN   9783034604611.
  5. Pipes, Alan (2005). Production for Graphic Designers. Overlook Hardcover. ISBN   978-1585676699.
  6. Baxter, Christa (May 2012). "Prindor Reduces Wastage of Cold Foil by 55%" (PDF). Sheetfed News. Archived from the original (PDF) on January 3, 2014. Retrieved January 2, 2014.