UV coating

Last updated

A UV coating (or more generally a radiation cured coating) is a surface treatment which either is cured by ultraviolet radiation, or which protects the underlying material from such radiation's harmful effects. [1] They have come to the fore because they are considered environmentally friendly and do not use solvents or produce volatile organic compounds (VOCs), or Hazardous Air Pollutant (HAPs), [2] although some materials used for UV coating, such as PVDF [3] in smart phones and tablets, are known to contain substances harmful to both humans and the environment. [4]

Contents

UV coatings on pipe and tube

UV coatings have been applied to mechanical tubing, safety/water suppression pipe and OCTG/line pipe for many years. UV coatings advantages in this application can be summarized as faster, smaller, and cleaner with no thermal ovens required. The coating and curing (almost instantly) at speeds ranging from 100 feet per minute to over 800 feet per minute so the faster production speeds provide greater opportunity for return on investment for the customer (ROI). The resulting smaller floor footprint for UV coatings line is 20–32 feet (6.1–9.8 m) in total length, while running 100–800 feet (30–244 m) feet per minute is also considered desirable. The process is cleaner because no Volatile organic compound|volatile organic compounds (VOCs), or Air pollution|Hazardous Air Pollutant (HAPs) are produced. [5]

Ultraviolet coatings in printing

Ultraviolet cured coatings can be applied over ink printed on paper and dried by exposure to UV radiation. [6] UV coatings can be formulated up to 100% solids so that they have no volatile component that contributes to pollution. [7] This high solids level also allows for the coating to be applied in very thin films. UV coatings can be formulated to a wide variety of gloss ranges. UV coating can be applied via most conventional industrial coating applications as well as by silkscreen and 3D printing. [8]

Due to the normally high solids content of UV coating/varnish the surface of the cured film can be extremely reflective and glossy. 80 lb text and heavier weights of paper can be UV coated, however, cover weights are preferred.

UV can be applied on spot locations of the paper or by flooding the page. This coating application can deepen the color of the printed area. Drying is virtually instantaneous when exposed to the correct level of UV light so projects can move quickly into the bindery.

A printed page with UV coating applied can be very shiny or flattened to a matte finish. A good example of UV coated paper is photo paper sold for home printing projects. UV coatings that are not fully cured can have a slightly sticky/tacky feel.

Ultraviolet coating of glass and plastic

Glass and plastic can be coated to diminish the amount of ultraviolet radiation that passes through. Common uses of such coating include eyeglasses and automotive windows. Photographic filters remove ultraviolet to prevent exposure of the film or sensor by invisible light. UV curable coatings can be used to impart a variety of properties to polymeric surfaces, including glare reduction, wear or scratch resistance, anti-fogging, microbial resistance, chemical resistance. Computer screens, keyboards, and most other personal electronic devices are treated with some type of UV-curable coating. Coatings are usually applied to plastic substrates via spray, dip, roll, flow and other processes. UV-curable coatings are often specified for plastic parts because the process does not require heat, which can distort the plastic shape. [9]

Ultraviolet coating of wood

The industrial wood finisher has essentially three options in types of UV-curable coatings to use—100% UV, water-reduced UV and solvent reduced UV. Each type of UV-curable coating can be applied by virtually any method of application. The selected method of application is dependent on the surface structure/property to be finished, the finish quality desired on that surface, and the production rate that finishing must achieve. [10] Another consideration is recovery, typically UV-curable coatings are more expensive than conventional cure coatings and as such any material that does not get applied to the part would need to be recovered as efficiently as possible. The selection of the UV-curable coating type applied by any method is really a matter of finish build or thickness, the ease to achieve certain finish subtleties (gloss, leveling, etc.), and the ease of use of the coating system. In general, if 100% UV-curable coatings can be used to produce the desired finish quality, it is best to set a course of action to use them. Costs, operation expenses and reporting requirements will be most advantageous with 100% UV-curable coatings. [11] If very thin film builds are desired, less than 100% actives may be necessary and the use of water-reduced UV-curable coatings is most preferential. [12]

Ultraviolet printing of aluminum beverage cans

When the aluminum cans are formed, they are washed and cleaned. A special coating also is applied on the inside of the can. On the printing press up to 6 different ink rollers supply the colors that coat the printing plates. (Similar process compared to offset lithography). After making contact with the rubber blanket, the can has a complete negative image per color. The process is considered wet on wet ink. After going through each color on the rotary belt, the final image is formed and a special coating is applied to each can to protect the can/colors from wear and tear. The completed cans are sent to the UV oven, that operate over 100 F and contains between six and eight 300 watt/inch UV lamps. Both inside and outside of the can are exposed to the light to ensure proper ink curing.

Site-applied UV coatings

In recent years, manufacturers have formulated ultraviolet curable coatings for applications outside of a factory or laboratory environment. This technology was first developed and commercialized by Professional Coatings Inc, (Cabot Ar) for substrates such as wood, concrete, vinyl tile and LVT. Other companies such as Arboritec/UVElite and UVGreenCure have continued in the development of new technologies around coating formulation and floor curing machines. Site Applied UV Coatings are available in both 100% solid and water-based formulations. They offer the advantage of quick return to service in the case of substrates such as wood, where polyurethanes can take several days before achieving full cure, and longevity in applications such as VCT, where an acrylic finish can be reapplied several times per year and buffed routinely. The coatings are applied as traditional coatings and then cured with an ultraviolet light (Generally either a mercury discharge lamp or LED-based system) mounted to a rolling chassis or by a handheld unit.

See also

Related Research Articles

<span class="mw-page-title-main">Paint</span> Pigment applied over a surface that dries as a solid film

Paint is a liquid pigment that, after applied to a solid material and allowed to dry, adds a film-like layer, in most cases to create an image, known as a painting. Paint can be made in many colors and types. Most paints are either oil-based or water-based, and each has distinct characteristics.

<span class="mw-page-title-main">Ultraviolet</span> Form of electromagnetic radiation

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs; Cherenkov radiation; and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights.

<span class="mw-page-title-main">Blacklight</span> Light fixture that emits long-wave ultraviolet light and very little visible light

A blacklight, also called a UV-A light, Wood's lamp, or ultraviolet light, is a lamp that emits long-wave (UV-A) ultraviolet light and very little visible light. One type of lamp has a violet filter material, either on the bulb or in a separate glass filter in the lamp housing, which blocks most visible light and allows through UV, so the lamp has a dim violet glow when operating. Blacklight lamps which have this filter have a lighting industry designation that includes the letters "BLB". This stands for "blacklight blue". A second type of lamp produces ultraviolet but does not have the filter material, so it produces more visible light and has a blue color when operating. These tubes are made for use in "bug zapper" insect traps, and are identified by the industry designation "BL". This stands for "blacklight".

In organic chemistry, a polyol is an organic compound containing multiple hydroxyl groups. The term "polyol" can have slightly different meanings depending on whether it is used in food science or polymer chemistry. Polyols containing two, three and four hydroxyl groups are diols, triols, and tetrols, respectively.

A coating is a covering that is applied to the surface of an object, usually referred to as the substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. Powder coatings.

<span class="mw-page-title-main">Powder coating</span> Type of coating applied as a free-flowing, dry powder

Powder coating is a type of coating that is applied as a free-flowing, dry powder. Unlike conventional liquid paint which is delivered via an evaporating solvent, powder coating is typically applied electrostatically and then cured under heat or with ultraviolet light. The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a hard finish that is tougher than conventional paint. Powder coating is mainly used for coating of metals, such as household appliances, aluminium extrusions, drum hardware, automobiles, and bicycle frames. Advancements in powder coating technology like UV-curable powder coatings allow for other materials such as plastics, composites, carbon fiber, and MDF to be powder coated due to the minimum heat and oven dwell time required to process these components.

<span class="mw-page-title-main">Alkyd</span> Polyester resin modified by the addition of fatty acids and other components

An alkyd is a polyester resin modified by the addition of fatty acids and other components. Alkyds are derived from polyols and organic acids including dicarboxylic acids or carboxylic acid anhydride and triglyceride oils. The term alkyd is a modification of the original name "alcid", reflecting the fact that they are derived from alcohol and organic acids. The inclusion of a fatty acid confers a tendency to form flexible coatings. Alkyds are used in paints, varnishes and in moulds for casting. They are the dominant resin or binder in most commercial oil-based coatings. Approximately 200,000 tons of alkyd resins are produced each year. The original alkyds were compounds of glycerol and phthalic acid sold under the name Glyptal. These were sold as substitutes for the darker-colored copal resins, thus creating alkyd varnishes that were much paler in colour. From these, the alkyds that are known today were developed.

<span class="mw-page-title-main">Hexamethylene diisocyanate</span> Chemical compound

Hexamethylene diisocyanate (HDI) is the organic compound with the formula (CH2)6(NCO)2. It is classified as an diisocyanate. It is a colorless liquid. It has sometimes been called HMDI but this not usually done to avoid confusion with Hydrogenated MDI.

<span class="mw-page-title-main">Photopolymer</span>

A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.

<span class="mw-page-title-main">ECTFE</span> Corrosion-resistant polymer

ECTFE (ethylene-chlorotrifluoroethylene) is an alternating copolymer of ethylene and chlorotrifluoroethylene. It is a semi-crystalline fluoropolymer, with chemical corrosion resistance properties.

Flatbed digital printers, also known as flatbed printers or flatbed UV printers, are printers characterized by a flat surface upon which a material is placed to be printed on. Flatbed printers are capable of printing on a wide variety of materials such as photographic paper, film, cloth, plastic, pvc, acrylic, glass, ceramic, metal, wood, leather, etc.). Flatbed digital printers usually use UV curable inks made of acrylic monomers that are then exposed to strong UV-light to cure, or polymerize them. This process allows for printing on a wide variety of surfaces such as wood or canvas, carpet, tile, and even glass. The adjustable printing bed makes it possible to print on surfaces ranging in thickness from a sheet of paper often up to as much as several inches. Typically used for commercial applications, flatbed printing is often a substitute for screen-printing. Since no printing plates or silkscreens must be produced, digital printing technology allows shorter runs of signs to be produced economically. Many of the high-end flatbed printers allow for roll-feed, allowing for unattended printing.

<span class="mw-page-title-main">Aminoethylpiperazine</span> Chemical compound

Aminoethylpiperazine (AEP) is a derivative of piperazine. This ethyleneamine contains three nitrogen atoms; one primary, one secondary and one tertiary. It is a corrosive organic liquid and can cause second or third degree burns. Aminoethylpiperazine can also cause pulmonary edema as a result of inhalation. It is REACH and TSCA registered.

<span class="mw-page-title-main">Beverage can printing</span>

Beverage can printing refers to the art and practice of applying an image to a metal beverage can, to advertise its contents.

Powder coating on glass is a specialized procedure related to traditional powder coating, which is the technique of applying electrostatically charged, dry powdered particles of pigment and resin to a solid item's surface. It requires its own unique process, however, because glass is a poor electrical conductor in comparison to metal, the traditional powder coating substrate.

Digital ceramic printing on glass is a technological development used for the application of imagery, pattern or text to the surface of flat glass. Like other printing on glass methods, it uses a form of printmaking. Digital ceramic printing on glass has allowed for new possibilities and improvements in flat glass decoration and treatment such as high levels of customization, translucency and opacity control, light diffusion and transmission, ability to calculate solar heat gain co-efficiency, electrical conductivity, slip resistance, and reduced incidences of bird collision.

Cold foil printing, also known as cold foil stamping, is a modern method of printing metallic foil on a substrate in order to enhance the aesthetic of the final product. Cold foil printing can be done two ways: the older dry lamination process common in the offset printing industry, or the newer, more versatile wet lamination process, which is dominant in the flexo label industry.

<span class="mw-page-title-main">UV curing</span>

UV curing is the process by which ultraviolet light is used to initiate a photochemical reaction that generates a crosslinked network of polymers. UV curing is adaptable to printing, coating, decorating, stereolithography, and in the assembly of a variety of products and materials. In comparison to other technologies, curing with UV energy may be considered a low-temperature process, a high-speed process, and is a solventless process, as cure occurs via direct polymerization rather than by evaporation. Originally introduced in the 1960s, this technology has streamlined and increased automation in many industries in the manufacturing sector.

Polyurethane dispersion, or PUD, is understood to be a polyurethane polymer resin dispersed in water, rather than a solvent, although some cosolvent maybe used. Its manufacture involves the synthesis of polyurethanes having carboxylic acid functionality or nonionic hydrophiles like PEG incorporated into, or pendant from, the polymer backbone. Two component polyurethane dispersions are also available.

Waterborne resins are sometimes called water-based resins. They are resins or polymeric resins that use water as the carrying medium as opposed to solvent or solvent-less. Resins are used in the production of coatings, adhesives, sealants, elastomers and composite materials. When the phrase waterborne resin is used, it usually describes all resins which have water as the main carrying solvent. The resin could be water-soluble, water reducible or water dispersed.

Blocked isocyanates are organic compounds that have their isocyanate functionality chemically blocked to control reactivity. They are the product of an isocyanate moiety and a suitable blocking agent. It may also be a polyurethane prepolymer that is NCO terminated but this functionality has also been chemically reacted with a blocking agent. They are usually used in polyurethane applications but not always. They are extensively used in industrial applications such as coatings, sealants and adhesives.

References

  1. Schwalm, Reinhold (2007). UV coatings : basics, recent developments and new applications. Amsterdam: Elsevier. ISBN   978-0-08-046689-7. OCLC   162131352.
  2. Wang, Jinwei; Chen, Yiyuan; Ma, Jiao (2022-11-01). "Photocured polyacrylate coatings modified by polybutadiene derivatives with multiunsaturated reactive bonds". Journal of Coatings Technology and Research. 19 (6): 1687–1695. doi:10.1007/s11998-022-00640-y. ISSN   1935-3804. S2CID   249650457.
  3. "Polyvinylidene fluoride", Wikipedia, 2023-05-03, retrieved 2023-07-17
  4. "Per- and polyfluoroalkyl substances", Wikipedia, 2023-07-13, retrieved 2023-07-17
  5. "UV Coating Advantages for Pipe And Tube Applications". American Coatings Association. Retrieved 2023-01-05.
  6. "Radiation-Cured Coatings Continue to Experience Growth". www.coatingstech-digital.org. Retrieved 2021-06-24.
  7. Fuh, J.Y.H.; Lu, L.; Tan, C.C.; Shen, Z.X.; Chew, S. (1999-01-01). "Curing characteristics of acrylic photopolymer used in stereolithography process". Rapid Prototyping Journal. 5 (1): 27–34. doi:10.1108/13552549910251855. ISSN   1355-2546.
  8. Wang, Yiyang; Li, Cheng; Tuo, Xiaohang; Gong, Yumei; Guo, Jing (2021-04-05). "Polyethylene glycol modified epoxy acrylate UV curable 3D printing materials" . Journal of Applied Polymer Science. 138 (13): 50102. doi:10.1002/app.50102. ISSN   0021-8995. S2CID   225120185.
  9. "Vueguard® 901WC ------ Water Clear Hardcoat". May 3, 2007. Archived from the original on July 15, 2011. Retrieved July 15, 2011.
  10. Huang, Yishuai; Ma, Tongtong; Li, Liping; Wang, Qingwen; Guo, Chuigen (2022-11-01). "Facile synthesis and construction of renewable, waterborne and flame-retardant UV-curable coatings in wood surface". Progress in Organic Coatings. 172: 107104. doi:10.1016/j.porgcoat.2022.107104. ISSN   0300-9440. S2CID   251638846.
  11. Bongiovanni, R; Montefusco, F; Priola, A; Macchioni, N; Lazzeri, S; Sozzi, L; Ameduri, B (2002-12-01). "High performance UV-cured coatings for wood protection". Progress in Organic Coatings. 45 (4): 359–363. doi:10.1016/S0300-9440(02)00119-4. ISSN   0300-9440.
  12. Rawat, Rajkumar Singh; Chouhan, Nidhi; Talwar, Meenu; Diwan, Rajendra Kumar; Tyagi, Ajay Kumar (2019-10-01). "UV coatings for wooden surfaces". Progress in Organic Coatings. 135: 490–495. doi:10.1016/j.porgcoat.2019.06.051. ISSN   0300-9440. S2CID   198390017.