UV curing

Last updated
Polymerization and cross linking occurs during UV curing UV Curing Process.jpg
Polymerization and cross linking occurs during UV curing

UV curing (ultraviolet curing) is the process by which ultraviolet light initiates a photochemical reaction that generates a crosslinked network of polymers through radical polymerization or cationic polymerization. [1] UV curing is adaptable to printing, coating, decorating, stereolithography, and in the assembly of a variety of products and materials. UV curing is a low-temperature, high speed, and solventless process as curing occurs via polymerization. [2] Originally introduced in the 1960s, this technology has streamlined and increased automation in many industries in the manufacturing sector. [3]

Contents

Applications

UV curing Kit for Huawei screen repair UV curing glue kit for Huawei-Screen.jpg
UV curing Kit for Huawei screen repair

UV curing is used for converting or curing inks, adhesives, and coatings. [4] UV-cured adhesive has become a high speed replacement for two-part adhesives, eliminating the need for solvent removal, ratio mixing, and potential life concern. [5] It is used in flexographic, offset, pad, and screen printing processes; where UV curing systems are used to polymerize images on screen-printed products, ranging from T-shirts to 3D and cylindrical parts. It is used in fine instrument finishing (guitars, violins, ukuleles, etc.), pool cue manufacturing and other wood craft industries. [6] Printing with UV curable inks provides the ability to print on a very wide variety of substrates such as plastics, [6] paper, canvas, glass, metal, [7] foam boards, tile, films, and many other materials. [8]

Industries that use UV curing include medicine, automobiles, cosmetics (for example artificial fingernails and gel nail polish), food, science, education, and art. [9] UV curable inks have successfully met the demands of the publication sector in terms of print quality, durability, and compatibility with different substrates, making them a suitable choice for printing applications in this industry. [10]

Advantages of UV curing

A primary advantage of curing with ultraviolet light is the speed at which a material can be processed. Speeding up the curing, or drying step, [11] in a process can reduce flaws and errors by decreasing time that an ink or coating spends as wet. This can increase the quality of a finished item, and potentially allow for greater consistency. Another benefit to decreasing manufacturing time is that less space needs to be devoted to storing items which can not be used until the drying step is finished.

Because UV energy has unique interactions with many different materials, UV curing allows for the creation of products with characteristics not achievable via other means. This has led to UV curing becoming fundamental in many fields of manufacturing and technology, where changes in strength, hardness, durability, chemical resistance, and many other properties are required.

Constituents of a UV curing system

Main components in UV cured solution

The main components of a UV curing solution includes resins, monomers, and photoinitiators. Resin is an oligomer that imparts specific properties to the final polymer. A monomer is used as a cross-linking agent and regulates the viscosity of the mixture to suit the application. The photoinitiator is responsible for absorbing the light and kickstarting the reaction, which helps control the cure rate and depth of cure. Each of these elements has a role to play in the crosslinking process and is linked to the composition of the final polymer. [12]

Types of UV curing lamps

Medium-pressure lamps

Medium-pressure mercury-vapor lamps have historically been the industry standard for curing products with ultraviolet light. [13] The bulbs work by sending an electric discharge to excite a mixture of mercury and noble gases, generating a plasma. Once the mercury reaches a plasma state, it irradiates a high spectral output in the UV region of the electromagnetic spectrum. Major peaks in light intensity occur in the 240-270  nm and 350-380 nm regions. These intense peaks, when matched with the absorption profile of a photoinitiator, cause the rapid curing of materials. By modifying the bulb mixture with different gases and metal halides, the distribution of wavelength peaks can be altered, and material interactions are changed.

Medium-pressure lamps can either be standard gas-discharge lamps or electrodeless lamps, and typically use an elongated bulb to emit energy. By incorporating optical designs such an elliptical or even aconic reflector, light can either be focused or projected over a far distance. These lamps can often operate at over 900 degrees Celsius and produce UV energy levels over 10 W/cm2.

Low-pressure lamps

UV LED Curing equipment UV LED Machine.jpg
UV LED Curing equipment

Low-pressure mercury-vapor lamps generate primarily 254 nm 'UVC' energy, and are most commonly used in disinfection applications. Operated at lower temperatures and with less voltage than medium-pressure lamps, they, like all UV sources, require shielding when operated to prevent excess exposure of skin and eyes.

UV LED

Since development of the aluminium gallium nitride LED in the early 2000s, UV LED technology has seen sustained growth in the UV curing marketplace. Generating energy most efficiently in the 365-405 nm 'UVA' wavelengths, continued technological advances, [14] have allowed for improved electrical efficiency of UV LEDs as well as significant increases in output. UV LED lamps generate high energy directed to a specific area which strengthen the uniformity. [15] Benefiting from lower-temperature operation and the lack of hazardous mercury, [16] UV LEDs have replaced medium-pressure lamps in many applications. Major limitations include difficulties in designing optics for curing on complex three-dimensional objects, and poor efficiency at generating lower-wavelength energy, though development work continues.

Mechanisms of UV curing

Radical Polymerization

Radical Polymerization is used in the curing of acrylic resins in the presence of UV in the industry. [17] Light energy from UV breaks apart photoinitiaters, forming radicals. The radical then react with the polymers, forming polymers with radical groups that then react with additional monomers. The monomer chain extends until it reaches another polymer and reacts with the polymer. Polymers will form with monomer bridges between them, thus leading to a cross-linked network.

Cationic Polymerization

Cationic polymerization is used in the curing of epoxy resins in the presence of UV in the industry. [17] Light energy from UV breaks apart photoinitiaters, forming an acidic which then donates a proton to the polymer. The monomers then attach themselves to the polymer, forming longer and longer chains leading to a cross-linked network.

See also

Related Research Articles

<span class="mw-page-title-main">Adhesive</span> Non-metallic material used to bond various materials together

Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation.

<span class="mw-page-title-main">Photoresist</span> Light-sensitive material used in making electronics

A photoresist is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronics industry.

<span class="mw-page-title-main">Ultraviolet</span> Energetic, invisible light energy range

Ultraviolet (UV) light is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights.

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Blacklight</span> Light fixture that emits long-wave ultraviolet light and very little visible light

A blacklight, also called a UV-A light, Wood's lamp, or ultraviolet light, is a lamp that emits long-wave (UV-A) ultraviolet light and very little visible light. One type of lamp has a violet filter material, either on the bulb or in a separate glass filter in the lamp housing, which blocks most visible light and allows through UV, so the lamp has a dim violet glow when operating. Blacklight lamps which have this filter have a lighting industry designation that includes the letters "BLB". This stands for "blacklight blue". A second type of lamp produces ultraviolet but does not have the filter material, so it produces more visible light and has a blue color when operating. These tubes are made for use in "bug zapper" insect traps, and are identified by the industry designation "BL". This stands for "blacklight".

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Mercury-vapor lamp</span> Light source using an electric arc through mercury vapor

A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger soda lime or borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.

<span class="mw-page-title-main">Powder coating</span> Type of coating applied as a free-flowing, dry powder

Powder coating is a type of coating that is applied as a free-flowing, dry powder. Unlike conventional liquid paint, which is delivered via an evaporating solvent, powder coating is typically applied electrostatically and then cured under heat or with ultraviolet light. The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a thick, tough finish that is more durable than conventional paint. Powder coating is mainly used for coating of metal objects, particularly those subject to rough use. Advancements in powder coating technology like UV-curable powder coatings allow for other materials such as plastics, composites, carbon fiber, and MDF to be powder coated, as little heat or oven dwell time is required to process them.

<span class="mw-page-title-main">Fluorinated ethylene propylene</span> Polymer

Fluorinated ethylene propylene (FEP) is a copolymer of hexafluoropropylene and tetrafluoroethylene. It differs from the polytetrafluoroethylene (PTFE) resins in that it is melt-processable using conventional injection molding and screw extrusion techniques. Fluorinated ethylene propylene was invented by DuPont and is sold under the brandname Teflon FEP. Other brandnames are Neoflon FEP from Daikin or Dyneon FEP from Dyneon/3M.

<span class="mw-page-title-main">Photopolymer</span>

A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.

A UV coating is a surface treatment which either is cured by ultraviolet radiation, or which protects the underlying material from such radiation's harmful effects. They have come to the fore because they are considered environmentally friendly and do not use solvents or produce volatile organic compounds (VOCs), or Hazardous Air Pollutant (HAPs), although some materials used for UV coating, such as PVDF in smart phones and tablets, are known to contain substances harmful to both humans and the environment.

<span class="mw-page-title-main">Photoinitiator</span> Molecule which creates reactive species when exposed to radiation

In chemistry, a photoinitiator is a molecule that creates reactive species when exposed to radiation. Synthetic photoinitiators are key components in photopolymers.

Adhesive bonding describes a wafer bonding technique with applying an intermediate layer to connect substrates of different types of materials. Those connections produced can be soluble or insoluble. The commercially available adhesive can be organic or inorganic and is deposited on one or both substrate surfaces. Adhesives, especially the well-established SU-8, and benzocyclobutene (BCB), are specialized for MEMS or electronic component production.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

<span class="mw-page-title-main">Beverage can printing</span>

Beverage can printing refers to the art and practice of applying an image to a metal beverage can, to advertise its contents.

An excimer lamp is a source of ultraviolet light based on spontaneous emission of excimer (exciplex) molecules.

<span class="mw-page-title-main">3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate</span> Chemical compound

3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (ECC) is a cycloaliphatic epoxy resin which is used in many industrial applications. It reacts by cationic polymerization using thermolatent photoinitiators to form crosslinked insoluble thermosets. Formulations based on cycloaliphatic epoxy resins such as ECC are known to form by curing thermosets with high heat and chemical resistance and good adhesion.

Projection micro-stereolithography (PµSL) adapts 3D printing technology for micro-fabrication. Digital micro display technology provides dynamic stereolithography masks that work as a virtual photomask. This technique allows for rapid photopolymerization of an entire layer with a flash of UV illumination at micro-scale resolution. The mask can control individual pixel light intensity, allowing control of material properties of the fabricated structure with desired spatial distribution.

1,6-Hexanediol diacrylate is a difunctional acrylate ester monomer used in the manufacture of polymers. It is particularly useful for use in ultraviolet light cure applications. Furthermore, it is also used in adhesives, sealants, alkyd coatings, elastomers, photopolymers, and inks for improved adhesion, hardness, abrasion and heat resistance. Like other acrylate monomers it is usually supplied with a radical inhibitor such as hydroquinone added.

Waterborne resins are sometimes called water-based resins. They are resins or polymeric resins that use water as the carrying medium as opposed to solvent or solvent-less. Resins are used in the production of coatings, adhesives, sealants, elastomers and composite materials. When the phrase waterborne resin is used, it usually describes all resins which have water as the main carrying solvent. The resin could be water-soluble, water reducible or water dispersed.

References

  1. Carroll, Gregory T.; Tripltt, L. Devon; Moscatelli, Alberto; Koberstein, Jeffrey T.; Turro, Nicholas J. (2011-04-20). "Photogeneration of gelatinous networks from pre-existing polymers" (PDF). Journal of Applied Polymer Science . 122: 168–174. doi:10.1002/app.34133. Archived from the original (PDF) on 2012-01-24. Retrieved January 20, 2018.
  2. Stowe, Richard W. (1996-11-08). Huffman, Robert E.; Stergis, Christos G. (eds.). "High-power UV lamps for industrial UV curing applications". Proceedings of the SPIE. Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation. 2831: 208–219. Bibcode:1996SPIE.2831..208S. doi:10.1117/12.257198. S2CID   137436887.
  3. Pappas, Peter S., ed. (1978). UV curing: science and technology. Vol. 2. Technology Marketing Corp. ISBN   0936840080.
  4. 1 2 Baars, Carin. "Decorad - Short impression page". decorad.com. Carin Baars.
  5. Salerni Marotta, Christine. "Advancements in Light Cure Adhesive Technology" (PDF). Henkel . Retrieved January 20, 2018.
  6. 1 2 Somiya, Shigeyuki, ed. (2003). Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties (2d ed.). Academic Press. ISBN   978-0-12-385469-8 . Retrieved 2018-01-21 via Google Books.
  7. "HD White Aluminum Metal Prints". canvasndecor.ca. Retrieved 2018-01-21.
  8. "What is UV Curing?". Arrow Inks. Retrieved October 27, 2016.
  9. Hoge, Stacy (April 8, 2016). "LED Curing Technology for Coatings". Coating World. Retrieved January 20, 2018.
  10. Wei Deng; Qi Luo (2012). Advanced Technology for Manufacturing Systems and Industry. Trans Tech Publications Ltd. pp. 771–. ISBN   978-3-03813-912-6.
  11. "UV curing acrylic vs UV curing epoxy". GA Lindberg. 2023-03-29. Retrieved 2024-04-14.
  12. "Constituents of a Free Radical UV Curing System". encyclopedia.pub. Retrieved 2024-04-14.
  13. "UV curing sources" . Retrieved 2023-08-08.
  14. "UV-LED Overview Part III: Diode Evolution and Manufacturing" (PDF). RADTECH Report. Retrieved 2021-03-29.
  15. "UV LED is greener, cheaper & better". UV LED is greener, cheaper & better. Retrieved 2022-06-21.
  16. "The Basics - UV LED Curing Community" . Retrieved 2019-03-08.
  17. 1 2 "UV-curing resin | ThreeBond Group". www.threebond.co.jp. Retrieved 2024-04-14.