Computer fan

Last updated
A 3D illustration of six 80 mm fans, a type of fan once commonly used in personal computers (sometimes as a set, or mixed with other fan sizes) 80mm fan.jpg
A 3D illustration of six 80 mm fans, a type of fan once commonly used in personal computers (sometimes as a set, or mixed with other fan sizes)
A 30-millimetre (1.2 in) PC fan laying atop one sized 250 mm (9.8 in) Computer fan comparison (Sharkoon 250mm vs Titan 30mm) (cropped).jpg
A 30-millimetre (1.2 in) PC fan laying atop one sized 250 mm (9.8 in)

A computer fan is any fan inside, or attached to, a computer case used for active cooling. Fans are used to draw cooler air into the case from the outside, expel warm air from inside and move air across a heat sink to cool a particular component. Both axial and sometimes centrifugal (blower/squirrel-cage) fans are used in computers. Computer fans commonly come in standard sizes, such as 92 mm, 120 mm (most common), 140 mm, and even 200220 mm. Computer fans are powered and controlled using 3-pin or 4-pin fan connectors.

Contents

Usage of a cooling fan

While in earlier personal computers it was possible to cool most components using natural convection (passive cooling), many modern components require more effective active cooling. To cool these components, fans are used to move heated air away from the components and draw cooler air over them. Fans attached to components are usually used in combination with a heat sink to increase the area of heated surface in contact with the air, thereby improving the efficiency of cooling. Fan control is not always an automatic process. A computer's BIOS can control the speed of the built-in fan system for the computer. A user can even supplement this function with additional cooling components or connect a manual fan controller with knobs that set fans to different speeds. [1]

In the IBM PC compatible market, the computer's power supply unit (PSU) almost always uses an exhaust fan to expel warm air from the PSU. Active cooling on CPUs started to appear on the Intel 80486, and by 1997 was standard on all desktop processors. [2] Chassis or case fans, usually one exhaust fan to expel heated air from the rear and optionally an intake fan to draw cooler air in through the front, became common with the arrival of the Pentium 4 in late 2000. [2]

Applications

An 80x80x25 mm axial computer fan Arctic cooling fan Pro TC 20060621.jpg
An 80×80×25 mm axial computer fan

Case fan

Fans from computer case - front and back Fans from computer case - front and back - 2018-05-22.jpg
Fans from computer case – front and back

Fans are used to move air through the computer case. The components inside the case cannot dissipate heat efficiently if the surrounding air is too hot. Case fans may be placed as intake fans, drawing cooler outside air in through the front or bottom of the chassis (where it may also be drawn over the internal hard drive racks), or exhaust fans, expelling warm air through the top or rear. Some ATX tower cases have one or more additional vents and mounting points in the left side panel where one or more fans may be installed to blow cool air directly onto the motherboard components and expansion cards, which are among the largest heat sources.

Standard axial case fans are 40, 60, 80, 92, 120, 140, 200 and 220 mm in width and length. As case fans are often the most readily visible form of cooling on a PC, decorative fans are widely available and may be lit with LEDs, made of UV-reactive plastic, and/or covered with decorative grilles. Decorative fans and accessories are popular with case modders. Air filters are often used over intake fans, to prevent dust from entering the case and clogging up the internal components. Heatsinks are especially vulnerable to being clogged up, as the insulating effect of the dust will rapidly degrade the heatsink's ability to dissipate heat.

PSU fan

While the power supply (PSU) contains a fan with few exceptions, it is not to be used for case ventilation. The hotter the PSU's intake air is, the hotter the PSU gets. As the PSU temperature rises, the conductivity of its internal components decrease. Decreased conductivity means that the PSU will convert more of the input electric energy into thermal energy (heat). This cycle of increasing temperature and decreased efficiency continues until the PSU either overheats, or its cooling fan is spinning fast enough to keep the PSU adequately supplied with comparatively cool air. The PSU is mainly bottom-mounted in modern PCs, having its own dedicated intake and exhaust vents, preferably with a dust filter in its intake vent.

CPU fan

CPU fan Thermalright Le Grand Macho RT functioning

Used to cool the CPU (central processing unit) heatsink. Effective cooling of a concentrated heat source such as a large-scale integrated circuit requires a heatsink, which may be cooled by a fan; [3] use of a fan alone will not prevent overheating of the small chip.

Graphics card fan

ASUS GeForce GTX 650 Ti, a PCI Express 3.0 x16 graphics card, using two fans for cooling ASUS GTX-650 Ti TOP Cu-II PCI Express 3.0 x16 graphics card.jpg
ASUS GeForce GTX 650 Ti, a PCI Express 3.0 ×16 graphics card, using two fans for cooling

Used to cool the heatsink of the graphics processing unit or the memory on graphics cards. These fans were not necessary on older cards because of their low power dissipation, but most modern graphics cards designed for 3D graphics and gaming need their own dedicated cooling fans. Some of the higher powered cards can produce more heat than the CPU (dissipating up to 350 watts [4] ), so effective cooling is especially important. Since 2010, graphics cards have been released with either axial fans, or a centrifugal fan also known as a blower, turbo or squirrel cage fan.

Chipset fan

Used to cool the heatsink of the northbridge of a motherboard's chipset; this may be needed where the system bus is significantly overclocked and dissipates more power than as usual, but may otherwise be unnecessary. As more features of the chipset are integrated into the central processing unit, the role of the chipset has been reduced and the heat generation reduced also.

Hard drive cooling

Fans may be mounted next to or onto a hard disk drive for cooling purposes. Hard drives can produce considerable heat over time, and are heat-sensitive components that should not operate at excessive temperatures. In many situations, natural convective cooling suffices, but in some cases fans may be required. These may include:

Multiple purposes

A small blower fan is used to direct air across a laptop computer's CPU cooler. Radialluefter.jpg
A small blower fan is used to direct air across a laptop computer's CPU cooler.

A case fan may be mounted on a radiator attached to the case, simultaneously operating to cool a liquid cooling device's working fluid and to ventilate the case. In laptops, a single blower fan often cools a heat sink connected to both CPU and GPU using heat pipes. In gaming laptops and mobile workstations, two or more heavy duty fans may be used. In rack-mounted servers, a single row of fans may operate to create an airflow through the chassis from front to rear, which is directed by passive ducts or shrouds across individual components' heat sinks.

Other purposes

Fans are, less commonly, used for other purposes such as:

Physical characteristics

Due to the low pressure, high volume air flows they create, most fans used in computers are of the axial flow type; centrifugal and crossflow fans type. [7] Two important functional specifications are the airflow that can be moved, typically stated in cubic feet per minute (CFM), and static pressure. [8] Given in decibels, the sound volume figure can be also very important for home and office computers; larger fans are generally quieter for the same CFM.

Dimensions

Fan sizes and corresponding screw hole spacing
Fan size (mm)Center of mounting hole spacing (mm)
4032
5040
6050
7060
8071.5
9282.5
120105
140124.5
200154
220170

The dimensions and mounting holes must suit the equipment that uses the fan. Square-framed fans are usually used, but round frames are also used, often so that a larger fan than the mounting holes would otherwise allow can be used (e.g., a 140 mm fan with holes for the corners of a 120 mm square fan). The width of square fans and the diameter of round ones are usually stated in millimeters. The dimension given is the outside width of the fan, not the distance between mounting holes. Common sizes include 40 mm, 60 mm, 80 mm, 92 mm, 120 mm and 140 mm, although 8 mm, [9] 17 mm, [10] 20 mm, [11] 25 mm, [12] 30 mm, [13] 35 mm, [14] 38 mm, [15] 45 mm, [16] 50 mm, [17] 70 mm, [18] 200 mm, 220 mm, [19] 250 mm [20] and 360 mm [21] sizes are also available. Heights, or thickness, are typically 10 mm, 15 mm, 25 mm or 38 mm.

Fan sizes from left to right: 140mm, 120mm, 92mm, 80mm, 60mm, 50mm and 40mm. Fan sizes.jpg
Fan sizes from left to right: 140mm, 120mm, 92mm, 80mm, 60mm, 50mm and 40mm.

Typically, square 120 mm and 140 mm fans are used where cooling requirements are demanding, as for computers used to play games, and for quieter operation at lower speeds. Larger fans are usually used for cooling case, CPUs with large heatsink and ATX power supply. Square 80 mm and 92 mm fans are used in less demanding applications, or where larger fans would not be compatible. Smaller fans are usually used for cooling CPUs with small heatsink, SFX power supply, graphics cards, northbridges, etc.

Rotational speed

The speed of rotation (specified in revolutions per minute, RPM) together with the static pressure determine the airflow for a given fan. Where noise is an issue, larger, slower-turning fans are quieter than smaller, faster fans that can move the same airflow. Fan noise has been found to be roughly proportional to the fifth power of fan speed; halving the speed reduces the noise by about 15  dB. [22] Axial fans may rotate at speeds of up to around 38,000 rpm for smaller sizes. [23]

Fans may be controlled by sensors and circuits that reduce their speed when temperature is not high, leading to quieter operation, longer life, and lower power consumption than fixed-speed fans. Fan lifetimes are usually quoted under the assumption of running at maximum speed and at a fixed ambient temperature.

Air pressure and flow

A fan with high static pressure is more effective at forcing air through restricted spaces, such as the gaps between a radiator or heatsink; static pressure is more important than airflow in CFM when choosing a fan for use with a heatsink. The relative importance of static pressure depends on the degree to which the airflow is restricted by geometry; static pressure becomes more important as the spacing between heatsink fins decreases. Static pressure is usually stated in either mm Hg or mm H2O.

Bearing types

The type of bearing used in a fan can affect its performance and noise. Most computer fans use one of the following bearing types:

Connectors

Three-pin connector on a computer fan Three-pin connector on a computer fan.jpg
Three-pin connector on a computer fan

Connectors usually used for computer fans are the following:

Three-pin Molex connector KK family
This Molex connector is used when connecting a fan to the motherboard or other circuit board. It is a small, thick, rectangular in-line female connector with two polarizing tabs on the outer-most edge of one long side. Pins are square and on a 0.1 inch (2.54 mm) pitch. The three pins are used for ground, +12 V power, and a tachometer signal. The Molex part number of receptacle is 22-01-3037. The Molex part number of the individual crimp contacts is 08-50-0114 (tin plated) or 08-55-0102 (semi gold plated). The matching PCB header Molex part number is 22-23-2031 (tin plated) or 22-11-2032 (gold plated). A corresponding wire stripper and crimping tools are also required.
Four-pin Molex connector KK family
This is a special variant of the Molex KK connector with four pins but with the locking/polarisation features of a three-pin connector. The additional pin is used for a pulse-width modulation (PWM) signal to provide variable speed control. [26] These can be plugged into 3-pin headers, but will lose their fan speed control. The Molex part number of receptacle is 47054-1000. The Molex part number of individual crimp contacts is 08-50-0114. The Molex part number of the header is 47053-1000.
Four-pin Molex connector
This connector is used when connecting the fan directly to the power supply. It consists of two wires (yellow/12 V and black/ground) leading to and splicing into a large in-line four-pin male-to-female Molex connector. The other two wires of the connector provide 5V (red) and ground (black too), and are not used in this case. This is the same connector as used on hard drives before the SATA became standard.
Three-pin Molex connector PicoBlade family
This connector is used with notebook fans or when connecting the fan to the video card.
Dell proprietary
This proprietary Dell connector is an expansion of a simple three-pin female IC connector by adding two tabs to the middle of the connector on one side and a lock-tab on the other side. The size and spacing of the pin sockets is identical to a standard three-pin female IC connector and three-pin Molex connector. Some models have the wiring of the white wire (speed sensor) in the middle, whereas the standard 3-pin Molex connector requires the white wire as pin #3, thus compatibility issues may exist.
Others
Some computer fans use two-pin connectors, of various designs.

Alternatives

If a fan is not desirable, because of noise, reliability, or environmental concerns, there are some alternatives. Some improvement can be achieved by eliminating all fans except one in the power supply which also draws hot air out of the case. [27]

Systems can be designed to use passive cooling alone, reducing noise and eliminating moving parts that may fail. This can be achieved by:

Other methods of cooling include:

See also

Related Research Articles

<span class="mw-page-title-main">Motherboard</span> Main printed circuit board (PCB) used for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

<span class="mw-page-title-main">Overclocking</span> Practice of increasing the clock rate of a computer to exceed that certified by the manufacturer

In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated speeds. Semiconductor devices operated at higher frequencies and voltages increase power consumption and heat. An overclocked device may be unreliable or fail completely if the additional heat load is not removed or power delivery components cannot meet increased power demands. Many device warranties state that overclocking or over-specification voids any warranty, but some manufacturers allow overclocking as long as it is done (relatively) safely.

<span class="mw-page-title-main">Quiet PC</span> Type of personal computer

A quiet, silent or fanless PC is a personal computer that makes very little or no noise. Common uses for quiet PCs include video editing, sound mixing and home theater PCs, but noise reduction techniques can also be used to greatly reduce the noise from servers. There is currently no standard definition for a "quiet PC", and the term is generally not used in a business context, but by individuals and the businesses catering to them.

<span class="mw-page-title-main">Case modding</span> Modifications to a computer to add or remove extra hardware

Case modification, commonly referred to as case modding, is the modification of a computer case or a video game console chassis. Modifying a computer case in any non-standard way is considered a case mod. Modding is done, particularly by hardware enthusiasts, to show off a computer's apparent power by showing off the internal hardware, and also to make it look aesthetically pleasing to the owner.

<span class="mw-page-title-main">ATX</span> Motherboard and power supply configuration

ATX is a motherboard and power supply configuration specification, patented by David Dent in 1995 at Intel, to improve on previous de facto standards like the AT design. It was the first major change in desktop computer enclosure, motherboard and power supply design in many years, improving standardization and interchangeability of parts. The specification defines the dimensions; the mounting points; the I/O panel; and the power and connector interfaces among a computer case, a motherboard, and a power supply.

<span class="mw-page-title-main">BTX (form factor)</span> Form factor for motherboards

BTX is a form factor for motherboards, originally intended to be the replacement for the aging ATX motherboard form factor in late 2004 and early 2005.

<span class="mw-page-title-main">Computer cooling</span> The process of removing waste heat from a computer

Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, hard disk drives, and solid state drives.

<span class="mw-page-title-main">Computer fan control</span> Management of the rotational speed of a computer fan

Fan control is the management of the rotational speed of an electric fan. In computers, various types of computer fans are used to provide adequate cooling, and different fan control mechanisms balance their cooling capacities and noise they generate. This is commonly accomplished by the motherboards having hardware monitoring circuitry, which can be configured by the end-user through BIOS or other software to perform fan control.

<span class="mw-page-title-main">Water block</span> Heat exchanger used in liquid cooling

A water block is the watercooling equivalent of a heatsink. It is a type of plate heat exchanger and can be used on many different computer components, including the central processing unit (CPU), GPU, PPU, and northbridge chipset on the motherboard. There are also Monoblocks on the market that are mounted on PC motherboards and cover the CPU and its power delivery VRMs that surround the CPU socket area. It consists of at least two main parts; the "base", which is the area that makes contact with the device being cooled and is usually manufactured from metals with high thermal conductivity such as aluminum or copper. The second part, the "top" ensures the water is contained safely inside the water block and has connections that allow hosing to connect it with the water cooling loop. The top can be made of the same metal as the base, transparent Perspex, Delrin, Nylon, or HDPE. Most newer high-end water blocks also contain mid-plates which serve to add jet tubes, nozzles, and other flow altering devices.

<span class="mw-page-title-main">Computer case</span> Enclosure that contains most of the computer hardware

A computer case, also known as a computer chassis, is the enclosure that contains most of the hardware of a personal computer. The components housed inside the case are referred as the internal hardware, while hardware outside the case are known as peripherals.

<span class="mw-page-title-main">WTX (form factor)</span> Motherboard form factor specification

WTX was a motherboard form factor specification introduced by Intel at the IDF in September 1998, for its use at high-end, multiprocessor, multiple-hard-disk servers and workstations. The specification had support from major OEMs and motherboard manufacturers and was updated (1.1) in February 1999. As of 2008, the specification has been discontinued and the URL www.wtx.org no longer hosts a website and has not been owned by Intel since at least 2004.

<span class="mw-page-title-main">Small form factor (desktop and motherboard)</span> Form factor for desktop computers and motherboards

Small form factor is a term used for desktop computers and for some of its components, chassis and motherboard, to indicate that they are designed in accordance with one of several standardized computer form factors intended to minimize the volume and footprint of a desktop computer compared to the standard ATX form factor.

<span class="mw-page-title-main">Molex connector</span> Two-piece pin-and-socket connector

A Molex connector is a two-piece pin-and-socket interconnection which became an early electronic standard. Developed by Molex Connector Company in the late 1950s, the design features cylindrical spring-metal pins that fit into cylindrical spring-metal sockets, both held in a rectangular matrix in a nylon shell.

<span class="mw-page-title-main">Thermal management (electronics)</span> Regulation of the temperature of electronic circuitry to prevent inefficiency or failure

All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.

<span class="mw-page-title-main">Power supply unit (computer)</span> Internal computer component that provides power to other components

A power supply unit (PSU) converts mains AC to low-voltage regulated DC power for the internal components of a computer. Modern personal computers universally use switched-mode power supplies. Some power supplies have a manual switch for selecting input voltage, while others automatically adapt to the main voltage.

<span class="mw-page-title-main">Centrifugal fan</span> Mechanical fan that forces fluid to move radially outward

A centrifugal fan is a mechanical device for moving air or other gases in a direction at an angle to the incoming fluid. Centrifugal fans often contain a ducted housing to direct outgoing air in a specific direction or across a heat sink; such a fan is also called a blower, blower fan, or squirrel-cage fan. Tiny ones used in computers are sometimes called biscuit blowers. These fans move air from the rotating inlet of the fan to an outlet. They are typically used in ducted applications to either draw air through ductwork/heat exchanger, or push air through similar impellers. Compared to standard axial fans, they can provide similar air movement from a smaller fan package, and overcome higher resistance in air streams.

<span class="mw-page-title-main">Fan (machine)</span> Machine used to produce air flow

A fan is a powered machine used to create a flow of air. A fan consists of a rotating arrangement of vanes or blades, generally made of wood, plastic, or metal, which act on the air. The rotating assembly of blades and hub is known as an impeller, rotor, or runner. Usually, it is contained within some form of housing, or case. This may direct the airflow, or increase safety by preventing objects from contacting the fan blades. Most fans are powered by electric motors, but other sources of power may be used, including hydraulic motors, handcranks, and internal combustion engines.

<span class="mw-page-title-main">Socket AM3+</span> CPU socket for AMD CPUs

Socket AM3+ is a modification of Socket AM3, which was released on February 9, 2009. AM3+ was released in mid-2011 designed for CPUs which use the AMD Bulldozer microarchitecture and retains compatibility with processors made for AM3. The Vishera line of AMD CPUs also all use Socket AM3+. It is the last AMD socket for which Windows XP support officially exists.

Be Quiet! is a German computer hardware brand owned by Listan GmbH, which manufactures power supply units, CPU coolers, computer cases and case fans. The main target groups for products in the Be Quiet! range are PC enthusiasts and computer game players as well as system integrators. The company's headquarters is in Glinde, close to Hamburg. At present, the firm also has branches in Poland and China and also Taiwan. The products of Be Quiet! are directly sold from Glinde to distributors and resellers worldwide. However, the major market of the Be Quiet! brand is Europe.

References

  1. Gordon, Whitson (2017-07-03). "How to Auto-Control Your PC's Fans for Cool, Quiet Operation". How-To Geek. Retrieved 2017-08-18.
  2. 1 2 Mueller, Scott 2005. Upgrading and Repairing PCs. Que Publishing. 16th edition. pp 1274–1280
  3. Acosta, Jeremy. "Air Cooling or Liquid Cooling for PC What to Choose and Why?". Games and Gears. Archived from the original on 2017-02-11. Retrieved 2017-02-14.
  4. "Nvidia's new RTX 3090 is a $1,499 monster GPU designed for 8K gaming". The Verge . September 2020. Retrieved 2020-10-21.
  5. "The CoolIT Systems RAM Fan Review: Does Memory Really Need a Fan?" . Retrieved 2013-02-05.
  6. Anand Lal Shimpi (2006-08-09). "Apple's Mac Pro: A Discussion of Specifications". AnandTech . Retrieved 2014-10-15.
  7. Pelonis, Sam (2015-11-04). "Axial Vs. Centrifugal Fans". Pelonis Technologies. Retrieved 2017-08-18.
  8. Acosta, Jeremy. "High Airflow vs Static Pressure Fans". Games and Gears Elite. Archived from the original on 2020-03-29. Retrieved 2017-02-17.
  9. "SunOn UF383-100 8×8×3 mm fan" (PDF). Retrieved 2015-03-07.
  10. "EC 1708 fan series". evercool.com.tw. Archived from the original on 2015-05-15. Retrieved 2015-02-20.
  11. "EC 2008 fan series". evercool.com.tw. Archived from the original on 2015-09-24. Retrieved 2015-02-20.
  12. "2.5cm Black Fan – Akasa Thermal Solution". akasa.com.tw. Retrieved 1 April 2015.
  13. "RETAIL PACKAGE 3010 SERIES – EVERCOOL". evercool.com.tw. Archived from the original on 2019-02-11. Retrieved 2018-02-20.
  14. "RETAIL PACKAGE 3510 SERIES – EVERCOOL". evercool.com.tw. Archived from the original on 2019-02-10. Retrieved 2018-02-20.
  15. "EC 3838 fan series". evercool.com.tw. Archived from the original on 2015-09-24. Retrieved 2015-02-20.
  16. "RETAIL PACKAGE 4510 SERIES – EVERCOOL". evercool.com.tw. Archived from the original on 2019-02-10. Retrieved 2018-02-20.
  17. "5cm Black Fan – Akasa Thermal Solution". akasa.com.tw. Retrieved 2018-02-20.
  18. "7cm Black Fan – Akasa Thermal Solution". akasa.com.tw. Retrieved 2018-02-20.
  19. "22cm Black Fan – Akasa Thermal Solution". akasa.com.tw. Retrieved 2018-02-20.
  20. "250 mm-Lüfter – SHARKOON Technologies GmbH". sharkoon.com. Retrieved 1 April 2015.
  21. "360mm Silent Jumbo Fan". rexflo.com. Archived from the original on 2 April 2015. Retrieved 1 April 2015.
  22. "Top 10 noise control techniques" (PDF). www.hse.gov.uk. UK Health and Safety Executive.
  23. "May 28, 2020 San Ace | Product News | Products | SANYO DENKI".
  24. 1 2 3 Williams, Melody. "Ball vs Sleeve: A Comparison in Bearing Performance" (PDF). Archived from the original (PDF) on 2011-01-02. Retrieved 2007-10-30.
  25. "Coolermaster Neon LED Case Fans Review". 2003-03-25. Retrieved 2007-12-05.
  26. "4-Wire PWM Controlled Fans Specification" (PDF). September 2005. Archived from the original (PDF) on 2011-07-26. Retrieved 2009-12-11.
  27. Silent PC Review Recommended Power Supplies , retrieved 2010-08-01
  28. Greene, Kate (2009-05-19). "A Laptop Cooled with Ionic Wind | MIT Technology Review". Technologyreview.com. Archived from the original on 2011-11-15. Retrieved 2015-02-20.
  29. Patel, Prachi (2007-08-22). "Cooling Chips with an Ion Breeze | MIT Technology Review". Technologyreview.com. Archived from the original on 2011-06-07. Retrieved 2015-02-20.