Underclocking

Last updated

Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, reduce heat emission, and it may also increase the system's stability, lifespan/reliability and compatibility. Underclocking may be implemented by the factory, but many computers and components may be underclocked by the end user.

Contents

Types

CPU underclocking

For microprocessors, the purpose is generally to decrease the need for heat dissipation devices or decrease the electrical power consumption. This can provide increased system stability in high-heat environments, or can allow a system to run with a lower airflow (and therefore quieter) cooling fan or without one at all. For example, a Pentium 4 processor normally clocked at 3.4 GHz can be "underclocked" to 2 GHz and can then be safely run with reduced fan speeds. This invariably comes at the expense of some system performance. However, the proportional performance reduction is usually less than the proportional reduction in clock speed because performance is often limited by other bottlenecks: the hard disk, GPU, disk controller, Internet, network, etc. Underclocking refers to alterations of the timing of a synchronous circuit in order to lower a device's energy needs. Deliberate underclocking involves limiting a processor's speed, which may affect the speed of operations, but may or may not make a device noticeably less able, depending on other hardware and desired use.

Many computers and other devices allow for underclocking. Manufacturers add underclocking options for many reasons. Underclocking can help with excessive heat buildup, because lower performance will not generate as much heat inside the device. It can also lower the amount of energy needed to run the device. Laptop computers and other battery-operated devices often have underclocking settings, so that batteries can last longer without being charged.

In addition to providing underclocking features, manufacturers can choose to limit the capability of a machine in order to make it more efficient. Reduced instruction set computer (RISC) models can help makers build devices that work on less power.

Graphics cards

Underclocking can also be performed on graphics card processor's GPUs, usually with the aim of reducing heat output. For instance, it is possible to set a GPU to run at lower clock rates when performing everyday tasks (e.g. internet browsing and word processing), thus allowing the card to operate at lower temperature and thus lower, quieter fan speeds. The GPU can then be overclocked for more graphically intense applications, such as games. Underclocking a GPU will reduce performance, but this decrease will probably not be noticeable except in graphically intensive applications.

Memory underclocking

Newer and faster RAM may be underclocked to match older systems as an inexpensive way to replace rare or discontinued memory. This might also be necessary if stability problems are encountered at higher settings, especially in a PC with several memory modules of different clock speed. If a PC processor is underclocked, and the clock factor or multiplier (the ratio between the processor and the memory clock speed) is unchanged, the memory will also be underclocked.

When used

Dynamic frequency scaling (automatic underclocking) is very common on laptop computers and has become common on desktop computers as well. In laptops, the processor is usually underclocked automatically whenever the computer is operating on batteries. Most modern notebook and desktop processors (utilizing power-saving schemes like AMD's Cool'n'Quiet and PowerNow! [1] ) will underclock themselves automatically under a light processing load, when the machine BIOS and the operating system support it. Intel has also used this method on numerous processors through a feature called SpeedStep. SpeedStep first appeared on chips like the Core 2 Duo and selective Pentium models, later becoming a standard in mid to high-end Core i3, i5, and i7 models.

Some processors underclock automatically as a defensive measure, to prevent overheating which could cause permanent damage. When such a processor reaches a temperature level deemed too high for safe operation, the thermal control circuit activates, automatically decreasing the clock and CPU core voltage until the temperature has returned to a safe level. In a properly cooled environment, this mechanism should trigger rarely (if ever).

There are several different underclocking competitions similar in format to overclocking competitions, except the goal is to have the lowest clocked computer, as opposed to the highest.[ which? ][ citation needed ]

Advantages

In general, the power consumed by a CPU with a capacitance C, running at frequency f and voltage V is approximately [4]

In practice

Linux

Linux kernel supports CPU frequency modulation. In supported processors, using cpufreq to gain access to this feature gives the system administrator a variable level of control over the CPU's clock rate. The kernel includes five governors by default: Conservative, Ondemand, Performance, Powersave, and Userspace. The Conservative and Ondemand governors adjust the clock rate depending on the CPU load, but each with different algorithms. The Ondemand governor jumps to maximum frequency on CPU load and decreases the frequency step by step on CPU idle, whereas the Conservative governor increases the frequency step by step on CPU load and jumps to lowest frequency on CPU idle. The Performance, Powersave and Userspace governors set the clock rate statically: Performance to the highest available, Powersave to the lowest available, and Userspace to a frequency determined and controlled by the user.

Windows

Underclocking can be done manually in the BIOS or with Windows applications, or dynamically using features such as Intel's SpeedStep or AMD's Cool'n'Quiet. In Windows 7 and 10, underclocking can be set within the "advanced" settings of a power management plan. [5] [6]

Asus Eee PC

Earlier models of the Asus Eee PC used a 900 MHz Intel Celeron M processor underclocked to 630 MHz.

Mac OS X

Underclocking can be performed in the EFI.

Smartphones and PDAs

Most smartphones and PDAs, such as the Motorola Droid, Palm Pre, and Apple iPhone, use underclocking of a more powerful processor, rather than the full clocking of a less powerful processor, to maximize battery life. The designers for such mobile devices often discover that a slower processor gives worse battery life than a more powerful processor at a lower clock rate. They select a processor on the basis of the performance per watt of the processor. [7]

Performance

The performance of an underclocked machine will often be better than might be expected. Under normal desktop use, the full power of the CPU is rarely needed. Even when the system is busy, a large amount of time is usually spent waiting for data from memory, disk, or other devices. Such devices communicate with the CPU through a bus which operates at a much lower bandwidth. Generally, the lower the CPU multiplier (and thus clockrate of a CPU), the closer its performance will be to that of the bus, and the less time it will spend waiting.

See also

Related Research Articles

<span class="mw-page-title-main">Overclocking</span> Practice of increasing the clock rate of a computer to exceed that certified by the manufacturer

In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated speeds. Semiconductor devices operated at higher frequencies and voltages increase power consumption and heat. An overclocked device may be unreliable or fail completely if the additional heat load is not removed or power delivery components cannot meet increased power demands. Many device warranties state that overclocking or over-specification voids any warranty, however there are an increasing number of manufacturers that will allow overclocking as long as performed (relatively) safely.

<span class="mw-page-title-main">Front-side bus</span> Type of computer communication interface

A front-side bus (FSB) is a computer communication interface (bus) that was often used in Intel-chip-based computers during the 1990s and 2000s. The EV6 bus served the same function for competing AMD CPUs. Both typically carry data between the central processing unit (CPU) and a memory controller hub, known as the northbridge.

<span class="mw-page-title-main">Pentium M</span> Family of Intel microprocessors

The Pentium M is a family of mobile 32-bit single-core x86 microprocessors introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. The Pentium M processors had a maximum thermal design power (TDP) of 5–27 W depending on the model, and were intended for use in laptops. They evolved from the core of the last Pentium III–branded CPU by adding the front-side bus (FSB) interface of Pentium 4, an improved instruction decoding and issuing front end, improved branch prediction, SSE2 support, and a much larger cache. The first Pentium M–branded CPU, code-named Banias, was followed by Dothan. The Pentium M line was removed from the official price lists in July 2009, when the Pentium M-branded processors were succeeded by the Core-branded dual-core mobile Yonah CPU with a modified microarchitecture. It replaced the Mobile Pentium 4 processor, which suffered from power consumption and heat problems.

Processor power dissipation or processing unit power dissipation is the process in which computer processors consume electrical energy, and dissipate this energy in the form of heat due to the resistance in the electronic circuits.

In computing, the clock rate or clock speed typically refers to the frequency at which the clock generator of a processor can generate pulses, which are used to synchronize the operations of its components, and is used as an indicator of the processor's speed. It is measured in the SI unit of frequency hertz (Hz).

<span class="mw-page-title-main">Quiet PC</span> Type of personal computer

A quiet, silent or fanless PC is a personal computer that makes very little or no noise. Common uses for quiet PCs include video editing, sound mixing and home theater PCs, but noise reduction techniques can also be used to greatly reduce the noise from servers. There is currently no standard definition for a "quiet PC", and the term is generally not used in a business context, but by individuals and the businesses catering to them.

Power management is a feature of some electrical appliances, especially copiers, computers, computer CPUs, computer GPUs and computer peripherals such as monitors and printers, that turns off the power or switches the system to a low-power state when inactive. In computing this is known as PC power management and is built around a standard called ACPI, this supersedes APM. All recent computers have ACPI support.

<span class="mw-page-title-main">Northbridge (computing)</span> One of the two chips in the core logic chipset architecture on a PC motherboard

In computing, a northbridge is one of two chips comprising the core logic chipset architecture on a PC motherboard. A northbridge is connected directly to a CPU via the front-side bus (FSB) to handle high-performance tasks, and is usually used in conjunction with a slower southbridge to manage communication between the CPU and other parts of the motherboard. Since the 2010s, die shrink and improved transistor density have allowed for increasing chipset integration, and the functions performed by northbridges are now often incorporated into other components. As of 2019, Intel and AMD had both released chipsets in which all northbridge functions had been integrated into the CPU. Modern Intel Core processors have the northbridge integrated on the CPU die, where it is known as the uncore or system agent.

<span class="mw-page-title-main">Computer cooling</span> The process of removing waste heat from a computer

Computer cooling is required to remove the waste heat produced by computer components, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, and hard disk drives.

The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component that the cooling system in a computer is designed to dissipate under any workload.

<span class="mw-page-title-main">Pentium D</span>

Pentium D is a range of desktop 64-bit x86-64 processors based on the NetBurst microarchitecture, which is the dual-core variant of the Pentium 4 manufactured by Intel. Each CPU comprised two dies, each containing a single core, residing next to each other on a multi-chip module package. The brand's first processor, codenamed Smithfield and manufactured on the 90 nm process, was released on May 25, 2005, followed by the 65 nm Presler nine months later.

AMD Cool'n'Quiet is a CPU dynamic frequency scaling and power saving technology introduced by AMD with its Athlon XP processor line. It works by reducing the processor's clock rate and voltage when the processor is idle. The aim of this technology is to reduce overall power consumption and lower heat generation, allowing for slower cooling fan operation. The objectives of cooler and quieter result in the name Cool'n'Quiet. The technology is similar to Intel's SpeedStep and AMD's own PowerNow!, which were developed with the aim of increasing laptop battery life by reducing power consumption.

The CPU core voltage (VCORE) is the power supply voltage supplied to the CPU, GPU, or other device containing a processing core. The amount of power a CPU uses, and thus the amount of heat it dissipates, is the product of this voltage and the current it draws. In modern CPUs, which are CMOS circuits, the current is almost proportional to the clock speed, the CPU drawing almost no current between clock cycles.

Enhanced SpeedStep is a series of dynamic frequency scaling technologies built into some Intel microprocessors that allow the clock speed of the processor to be dynamically changed by software. This allows the processor to meet the instantaneous performance needs of the operation being performed, while minimizing power draw and heat generation. EIST was introduced in several Prescott 6 series in the first quarter of 2005, namely the Pentium 4 660. Intel Speed Shift Technology (SST) was introduced in Intel Skylake Processor.

The Intel Core microarchitecture is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004 the new version of NetBurst (Prescott) needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004 Intel confirmed the cancellation of the next NetBurst. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice of a short and efficient pipeline, delivering superior performance despite not reaching the high clocks of NetBurst.

Yonah was the code name of Intel's first generation 65 nm process CPU cores, based on cores of the earlier Banias / Dothan Pentium M microarchitecture. Yonah CPU cores were used within Intel's Core Solo and Core Duo mobile microprocessor products. SIMD performance on Yonah improved through the addition of SSE3 instructions and improvements to SSE and SSE2 implementations; integer performance decreased slightly due to higher latency cache. Additionally, Yonah included support for the NX bit.

Dynamic frequency scaling is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems.

Dynamic voltage scaling is a power management technique in computer architecture, where the voltage used in a component is increased or decreased, depending upon circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic voltage scaling to decrease voltage is known as undervolting. Undervolting is done in order to conserve power, particularly in laptops and other mobile devices, where energy comes from a battery and thus is limited, or in rare cases, to increase reliability. Overvolting is done in order to support higher frequencies for performance.

Low-power electronics are electronics, such as notebook processors, that have been designed to use less electric power than usual, often at some expense. In the case of notebook processors, this expense is processing power; notebook processors usually consume less power than their desktop counterparts, at the expense of lower processing power.

AMD Turbo Core a.k.a. AMD Core Performance Boost (CPB) is a dynamic frequency scaling technology implemented by AMD that allows the processor to dynamically adjust and control the processor operating frequency in certain versions of its processors which allows for increased performance when needed while maintaining lower power and thermal parameters during normal operation. AMD Turbo Core technology has been implemented beginning with the Phenom II X6 microprocessors based on the AMD K10 microarchitecture. AMD Turbo Core is available with some AMD A-Series accelerated processing units.

References

  1. "Global Provider of Innovative Graphics, Processors and Media Solutions". AMD. Retrieved 2016-06-02.
  2. "Ultimate Underclock & Undervolt Project". Silentpcreview.com. 2002-07-28. Retrieved 2016-06-02.
  3. "Fra overklokking til underklokking - Data Respons". Archived from the original on July 8, 2011. Retrieved November 27, 2010.
  4. "Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor - White Paper" (PDF). Intel Corporation. March 2004. Archived (PDF) from the original on 2015-08-12.
  5. "How does windows "limit" the CPU (Power Options / Battery saving)". superuser StackExchange. Retrieved 30 April 2020.
  6. Hunt, Cale. "7 ways to get better battery life from your Windows 10 PC". Windows Central. Retrieved 30 April 2020.
  7. "Microprocessor Design: Performance Metrics"