Convict cichlid

Last updated

Convict cichlid
Archocentrus nigrofasciatus female.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Cichliformes
Family: Cichlidae
Genus: Amatitlania
Species:
A. nigrofasciata
Binomial name
Amatitlania nigrofasciata
(Günther, 1867)
Synonyms
  • Heros nigrofasciatusGünther, 1867
  • Archocentrus nigrofasciatus(Günther, 1867)
  • Cichlasoma nigrofasciatum(Günther, 1867)
  • Cryptoheros nigrofasciatus(Günther, 1867)

The convict cichlid (Amatitlania nigrofasciata) is a fish species from the family Cichlidae, native to Central America, [2] also known as the zebra cichlid. [3] Convict cichlids are popular aquarium fish [2] and have also been the subject of numerous studies on fish behaviour. [4]

Contents

Taxonomy

Albert Günther originally described the species in 1867 after Frederick DuCane Godman and Osbert Salvin collected specimens in Central America. [5] In 2007, the species was moved from the genus Archocentrus to a new genus, Amatitlania , based on Juan Schmitter-Soto's study of Archocentus species. [6] However, a 2008 study led by Oldřich Říčan proposed moving the species in Cryptoheros and Amatitlania, including Amatitlania nigrofasciata into the genus Hypsophrys . [7]

The convict cichlid, as traditionally defined, displays significant color variations across its range. [8] [9] Some of these regional variants are now considered different species. [6] One of these is A. siquia, the Honduran red point cichlid or Honduran red point convict, which ranges from the Atlantic slope of Honduras south to Costa Rica. [6] Two other species formerly included in A. nigrofasciata are A. kanna from Panama's Atlantic slope, and A. coatepeque from Lake Coatepeque in El Salvador; however, the latter is indistinguishable from A. nigrofasciata, leading to the recommendation of regarding it as a junior synonym. [10]

The type species, A. nigrofasciata, which used to cover all these species, is restricted to the northern population ranging from El Salvador to Guatemala on the Pacific slope and from Honduras to Guatemala on the Atlantic slope. [6]

A number of synonyms exist for this species including: Archocentrus nigrofasciatus, Cichlasoma nigrofasciatum, Cryptoheros nigrofasciatus and Heros nigrofasciatus. [11] [12]

Etymology

The common name convict cichlid is, like the species name, derived from the vertical black stripes on the body which are reminiscent of the striped prison uniforms of British convicts. Similarly, the species epithet nigrofasciatus literally means "black-striped". [13]

Description

A young male convict cichlid showing the leucistic colouration Pink Convict Cichlid.jpg
A young male convict cichlid showing the leucistic colouration

The wild-type of the species has 8 or 9 black vertical bars on a blue-grey body, along with a dark blotch on the operculum. [2] Juvenile convict cichlids are monomorphic until they reach sexual maturity. The male is mostly gray with light black stripes along the body. Males are larger than females, and they have more pointed ventral, dorsal and anal fins which often extend into filaments. In addition, older males frequently develop vestigial fatty lumps on their foreheads. Unusually for fish, the female is more highly coloured. [14] She has more intense black bands across the body, and pink to orange colouration in the ventral region and on the dorsal fin. [15] [16] The maximum standard length has been reported to be 10 centimeters, with total length near 12 centimeters (4.7 in). [2] [17] The body weight of the fish is about 34–36 grams (1.2–1.3 oz). [2] Selective breeding has resulted in a leucistic strain, which lacks the dark barring of the wild type. [15] These are known commonly as white convicts, pink convicts, gold convicts, and A. nigrofasciata "Kongo". [2] [16] The leucistic colouration is caused by a mutation in an autosomal gene and is recessively inherited. [18]

Range and habitat

A male convict cichlid caught on a hook and line, in the heated outflow of a coal powerplant in Victoria, Australia. Convict Noxious Australia.jpg
A male convict cichlid caught on a hook and line, in the heated outflow of a coal powerplant in Victoria, Australia.

Convict cichlids are native to the lakes and streams of Central America. In particular, the species occurs along the eastern coast of Central America from Guatemala to Costa Rica, and on the western coast from Honduras to Panama. [2] Convict cichlids prefer moving water, and are most frequently found in habitats with cover in the form of rocks or sunken branches. [19] At four natural habitats of the convict cichlid in Costa Rica, the pH was found to range from 6.6–7.8, while carbonate hardness (KH) ranged from 63 to 77 ppm CaCO
3
. The daily water temperature ranged from 26–29 °C (79–84 °F). [14] Convict cichlids can be relatively tolerant of cool water, allowing them to colonise volcanic lakes at elevations of 1,500 meters (4,900 ft). [20]

Feral populations

The species also occurs outside its natural range, even being found in Australia, where it can be found in the warm effluent of power stations in Victoria, and in tropical Queensland. [21] It has also been captured in Perth, Western Australia, although this initial capture also resulted in its eradication. [22] In addition to Australia, the species has been introduced to Réunion, Japan, [2] Mexico, [12] Colombia, [23] Taiwan, [24] and the USA. [25] [26]

Feeding

Close up of a male convict cichlid showing teeth Male Convict Cichlid.jpg
Close up of a male convict cichlid showing teeth

In natural habitats, the species has an omnivorous diet composed of plants, algae and various prey including small fish, crustaceans, insects and worms. The fish can protrude its jaw 4.2% of its standard length, allowing it to have a varied diet. [27] Inferior social status and associated stress can affect digestive function in convict cichlids. [28]

Reproduction

Life cycle

Series of images of reproduction. Top to bottom: 1. Female with eggs, 2. One-day-old larvae, 3. Three-day-old larvae, 4. Five-week-old fry. Convict cichlid reproduction.png
Series of images of reproduction. Top to bottom: 1. Female with eggs, 2. One-day-old larvae, 3. Three-day-old larvae, 4. Five-week-old fry.

The convict cichlid can reach sexual maturity as young as 16 weeks, though sexual maturity more commonly occurs at 6 months. [20] Sexually mature convicts form monogamous pairs and spawn in small caves or crevices. In the wild, the fish excavate caves by moving earth from underneath large stones. [14] Females adhere eggs to the walls of the cave.

Like most cichlids, such as Oreochromis mossambicus , convicts brood (exhibit parental care of) both eggs and free-swimming fry. [29] The eggs hatch approximately 72 hours after fertilization. Until that time the parents expel intruders and potential egg predators from around the nest. They also fan the eggs, moving water with their fins over the clutch to provide oxygenation. They fan the eggs both day and night; at night they use their sense of smell to recognize the presence of the eggs in the dark, and they keep their pelvic fins in contact with the eggs to remain at the right distance for fanning. [30] [31] In darkness the pair recognizes each other and detect predators using their sense of smell. [32]

After hatching, the larvae spend another 72 hours absorb their yolk sacs and developing their fins before they become free-swimming fry. [33] The fry forage during daylight in a dense school and return to the cave or crevice for the night. [34] Like other cichlids, the parents retrieve their young just before dark, sucking up three or four at a time and delivering them into the nest. The parents anticipate night, using a sense of time; in laboratory experiments convict cichlids continued to retrieve young as night approached even in the absence of any signal, such as dimming light. [35] During the night, the fry bunch up at the bottom of the cave or nest, where the parents fan them. [36]

Both parents remain involved in guarding the fry from brood predators and engage in behaviors to assist feeding such as moving leaves or fin digging (digging up the substrate with their fins). [14] Brood care of eggs, larvae and free-swimming juveniles in the wild can last 4 to 6 weeks, [14] and occurs only once per season for the majority of females. [14] In contrast, females in aquaria are known to breed many times per year with short intervals of 12 or 13 days between broods, as long as suitable rocks or similar surfaces are available for them to lay their eggs on. [37]

Mating system

Convict cichlids are serially monogamous, so pair bonds may form first before they establish a territory together, or the male and female may each obtain a territory before pairing with each other. [38] Because the convict cichlids are also substrate-brooding, this territory will include a breeding site for the deposition of eggs. [39]

Sexual selection

The effect of population density on sexual selection for convict cichlids has been studied. When nest density was greater, the females tended to be larger, which is more accurately explained by density-dependent mate preference and mating competition, as opposed to predation and resource competition. Moreover, as the two nest density regimes were compared, with one high and one low, there was no significant difference in brood survival between the two; however, the convict cichlids did prefer to breed farther away from each other, not in close proximity. This indicates that there are some other costs with breeding in an environment with high population density, an example being energy loss because of the resulting increased aggression when guarding territory. [40]

The female's preference for the male mate has also been examined, in accordance to the male's size and fighting ability. The female cichlid always chooses the larger of the two males if the smaller male is next to the larger male, and if the larger male defeats the smaller male in a fight. If the males are not viewed together at the same time for a comparison to be drawn by the female, the female has no particular preference. Females do benefit by mating with a larger male, as it has been shown that larger males can raise more offspring to independence, are better at chasing predators that might attack offspring, and are better at competing for breeding sites. [41] Male size may act as a more effective indicator of aggression, which may thus repel intruders before they can come closer to the offspring. It has been shown that individuals of significantly greater size relative to their opponent often win fights without much physical contact. [39]

Parental roles

Convict cichlids are a biparental species, so the parents will usually cooperate by carrying out tasks specific to their individual parental roles when raising their offspring. This is common in cichlid fish, and studies have shown coordination between the female and male. [42] The female tends to remain with the brood and perform activities involving the brood fanning the eggs, whereas the male tends to patrol the area to chase intruders and defend from predators. [42] [43] Both parents are able to carry out all of the parental care tasks to a certain extent. However, because they are biparentally custodial, each sex will still focus on a specific set of behaviors in particular, which is susceptible to change during the brood cycle. [44] In fact, it is observed that when one of the mates is removed, either parent is still able to raise the offspring independently by having the capacity for all the parental behaviors. As the young offspring grow and become free-swimming fry, the parental activities are distributed more equally between the parents, which appears to be typical behavior in other types of cichlids as well. [42]

The different ways in which this biparental sex role specialization can be influenced was studied by manipulating the presence and absence of the mate as well as the presence and absence of an intruder. The former variable was considered because the specialization of parental roles only occurs when both parents are present, while the latter variable was considered because it is thought that biparental care in these cichlids was an evolutionary consequence of the protection of offspring from intruders. When both mates are present with no intruder, both parents may stay with the offspring by resembling single parents because each parent is addressing only the offspring and not its mate, or one parent may be concentrated on activities associated with the offspring while the other parent concentrates on patrolling and defending the area. Under these isolated conditions, a more equal sharing of parental behaviors tends to occur. However, when both mates are present and an intruder is introduced, the male spends more time chasing intruders while the female remains with the offspring more. When the intruder is present but a parent is by itself, the widowed male tends to leave the offspring unattended and instead attacks the intruder or predator. Therefore, the conclusive finding is that the male rarely remains with the offspring when the female is absent, and the female rarely confronts the intruder when the male is absent. [42]

Brood adoption

Convict cichlids may show extended biparental care and adopt unrelated young of the same species of similar or smaller body size compared to their own biological offspring. The parents may benefit by adopting smaller young by taking advantage of the dilution effect, which is when the risk of predation for an individual is reduced because the group size is larger. Another reason that has been considered is that foreign young that are larger than the biological offspring may be a direct predatory threat to them. However, it has been shown that as the biological offspring develop and become stronger swimmers, the parents are less active about rejecting larger foreign young, but when they do reject, often foreign young are rejected before they are large enough to be perceived as a direct threat to the biological offspring. Thus, it can be concluded that the brood adoption and rejection rely more heavily on the protection of the biological offspring from differential predator instead of from larger adopted cichlids. [45]

Aggressive behavior

Convict cichlids are known to be highly aggressive and territorial when breeding, possessing a variety of complex behaviors and adaptations, which have been suggested to be a result of environmental conditions, individual development, and trait variation. Due to their aggressive nature, cichlids are popularly studied to investigate the factors that may potentially cause their behavior. [46] Convict cichlids usually demonstrate their aggressive behavior by biting and chasing, which entails bursts of high speed targeted at the intruder, and also show their aggression via their body size. [47]

It has been shown that environmental parameters like changes in temperature and prior residence may affect the cichlid's territorial aggression. The convict cichlids are more aggressive at 30 °C as opposed to 26 °C, which may be explained by the fact that convict cichlids tend to set up their breeding sites and spawn at 30 °C. [48]

Aquarium care

Male and female Convicts Cichlids.jpg
Male and female

The aquarium should be decorated to mimic the natural environment and include rocks and artificial caves for breeding. [15] Most experts agree that a pair of convicts should be kept in a 20-gallon aquarium or larger. The species is an unfussy omnivore and most types of prepared fish foods are readily accepted. [49] The species also consumes aquatic plants so plastic plants or robust plants such as java fern or water sprite are recommended. [15] [16] Convict cichlids are aggressively territorial during breeding and pairs are best kept alone. Brood care is reduced in aquarium strains. [15] [16] Due to the species' tendency to dig, external filtration is superior to undergravel filter systems. [20] Its relatively small size, along with ease of keeping and breeding, make the convict an ideal cichlid for beginners and advanced aquarists alike interested in observing pair bonds and brood care. [20]

Breeding

Breeding convicts is as simple as having a male and a female in the same tank with adequate water quality and feeding. There is no special conditioning required. Due to their prolific breeding in captivity, there is a very low demand for Convict fry, and one may easily find their aquarium overstocked with an inbreeding population of Convicts without any avenues for adoption.

Tank mates

Ideal tank mates for convict cichlids consists of robust similar sized fish. Such fish include T-Bar cichlids, Honduran red points, Green Terrors, Salvini, Jack Dempsey, (Keep in mind as Dempseys outgrow the convicts territorial issues will become a problem.) Pictus catfish, plecostomus , as well as other convicts. Other fast moving fish such as Giant Danios can be used as dither fish. Also remember, if you have a breeding pair Convicts in a 40-gallon or smaller you will be most likely be unable to keep the convicts with any tank mates. But if your tank mates have established any type of dominance they will however breed and live together.

See also

Related Research Articles

<span class="mw-page-title-main">Cichlid</span> Family of fishes

Cichlids are fish from the family Cichlidae in the order Cichliformes. Traditionally Cichlids were classed in a suborder, the Labroidei, along with the wrasses (Labridae), in the order Perciformes, but molecular studies have contradicted this grouping. On the basis of fossil evidence, it first appeared in Tanzania during the Eocene epoch, about 46–45 million years ago. The closest living relative of cichlids is probably the convict blenny, and both families are classified in the 5th edition of Fishes of the World as the two families in the Cichliformes, part of the subseries Ovalentaria. This family is large, diverse, and widely dispersed. At least 1,650 species have been scientifically described, making it one of the largest vertebrate families. New species are discovered annually, and many species remain undescribed. The actual number of species is therefore unknown, with estimates varying between 2,000 and 3,000.

<span class="mw-page-title-main">Mouthbrooder</span> Animal that cares for its offspring by holding them its mouth

Mouthbrooding, also known as oral incubation and buccal incubation, is the care given by some groups of animals to their offspring by holding them in the mouth of the parent for extended periods of time. Although mouthbrooding is performed by a variety of different animals, such as the Darwin's frog, fish are by far the most diverse mouthbrooders. Mouthbrooding has evolved independently in several different families of fish.

<span class="mw-page-title-main">Jack Dempsey (fish)</span> Species of fish

The Jack Dempsey is a species of cichlid fish that is native to freshwater habitats from southern Mexico to Honduras, but also introduced elsewhere. Its common name refers to its aggressive nature and strong facial features, likened to that of the famous 1920s boxer Jack Dempsey.

<i>Julidochromis</i> Genus of fishes

Julidochromis is a genus of cichlids in the subfamily Pseudocrenilabrinae. They are commonly called julies and are endemic to Lake Tanganyika in eastern Africa. This genus includes six formally described species, some with a number local variants of uncertain taxonomic status. Further taxonomic work is required to determine how many species exist; the closely related Chalinochromis with two more species is sometimes included here and this may be correct. Hybridization makes attempts to determine relationships with molecular phylogenetic methods difficult.

<i>Tropheus moorii</i> Species of fish

Tropheus moorii is a species of cichlid endemic to Lake Tanganyika in Africa. Over 40 different color morphs of this species are dispersed throughout the lake, ranging from dark green to flame red and yellow. They mostly feed on filamentous algae on the rocky shallows they inhabit. T. moorii is a maternal mouthbrooder, so eggs are fertilized and young are carried in the mouth of the female while they hatch and develop.

<span class="mw-page-title-main">Pair bond</span> Biological term

In biology, a pair bond is the strong affinity that develops in some species between a mating pair, often leading to the production and rearing of young and potentially a lifelong bond. Pair-bonding is a term coined in the 1940s that is frequently used in sociobiology and evolutionary biology circles. The term often implies either a lifelong socially monogamous relationship or a stage of mating interaction in socially monogamous species. It is sometimes used in reference to human relationships.

<span class="mw-page-title-main">Ram cichlid</span> Species of fish

The ram cichlid, Mikrogeophagus ramirezi, is a species of freshwater fish endemic to the Orinoco River basin, in the savannahs of Venezuela and Colombia in South America. The species has been examined in studies on fish behaviour and is a popular aquarium fish, traded under a variety of common names, including ram, blue ram, German blue ram, Asian ram, butterfly cichlid, Ramirez's dwarf cichlid, dwarf butterfly cichlid and Ramirezi. The species is a member of the family Cichlidae and subfamily Geophaginae.

<i>Variabilichromis moorii</i> Species of fish

Variabilichromis moorii has no common name and is a species of freshwater cichlid endemic to Lake Tanganyika in eastern Africa. It is a small ovate bodied fish named for an early collector of fish from the lake, John Edmund Sharrock Moore (1870-1947) who was a cytologist, zoologist and led an expedition to Lake Tanganyika and who discovered this species. Juveniles are usually yellow, and adults are dark brown to black in color. It reaches a total length (TL) of 10.3 centimetres (4.1 in). Currently it is the only member of its genus. V. moorii feeds on algae, zooplankton, and benthic invertebrates. It is also found in the aquarium trade.

<i>Pelvicachromis pulcher</i> Species of fish

Pelvicachromis pulcher is a freshwater fish of the cichlid family, endemic to Nigeria and Cameroon. It is popular amongst aquarium hobbyists, and is most commonly sold under the name kribensis, although it has other common names, including various derivatives and color morphs of the kribensis: krib, common krib, red krib, super-red krib and rainbow krib, along with rainbow cichlid and purple cichlid.

<i>Amatitlania sajica</i> Species of fish

Amatitlania sajica, the T-bar cichlid or Sajica cichlid, is a Central American species of cichlid found in freshwater streams and lakes on the Pacific slope of Costa Rica. The fish is tan colored with seven indistinct bars on the body. The third bar is usually prominent and coupled with a dark lateral stripe running from the gill cover results in a horizontal T-shaped mark, hence the common name of T-bar cichlid.

<span class="mw-page-title-main">Texas cichlid</span> Species of fish

The Texas cichlid, also known as the Rio Grande cichlid, is a freshwater fish of the cichlid family, and the only cichlid species that is native to the United States. It is found in the lower Rio Grande drainage in Texas near Brownsville and northeastern Mexico.

<span class="mw-page-title-main">Rainbow cichlid</span> Species of fish

Herotilapia multispinosa also known as the rainbow cichlid is a Central American freshwater fish of the cichlid family. It is found on the Atlantic slope of Honduras, Nicaragua, and Costa Rica from Patuca River (Honduras) south to Matina River, and on the Pacific slope of Nicaragua and Costa Rica from Guasaule River south to Tempisque River. Specimens are also reported from the Choluteca River on the Pacific side of Honduras. This species is found in lakes and swamps with muddy bottoms, where it uses its specialized teeth and only 3.5% jaw protrusion to feed mostly on algae. It is commercially important as an aquarium fish. The rainbow cichlid prefers a pH range of 7.0–8.0, water hardness of 9-20 dGH and a temperature range of 21–36 °C.

<span class="mw-page-title-main">Parental care</span> Behavior in animals of taking care of offspring

Parental care is a behavioural and evolutionary strategy adopted by some animals, involving a parental investment being made to the evolutionary fitness of offspring. Patterns of parental care are widespread and highly diverse across the animal kingdom. There is great variation in different animal groups in terms of how parents care for offspring, and the amount of resources invested by parents. For example, there may be considerable variation in the amount of care invested by each sex, where females may invest more in some species, males invest more in others, or investment may be shared equally. Numerous hypotheses have been proposed to describe this variation and patterns in parental care that exist between the sexes, as well as among species.

<span class="mw-page-title-main">Convict julie</span> Species of fish

The convict julie is a cichlid species in the subfamily Pseudocrenilabrinae family endemic to Lake Tanganyika. Hence it is found in Burundi, the Democratic Republic of the Congo, Tanzania, and Zambia. The fish is named after Charles Tate Regan.

Mate desertion occurs when one or both parents abandon their current offspring, and thereby reduce or stop providing parental care. Often, by deserting, a parent attempts to increase breeding opportunities by seeking out another mate. This form of mating strategy behavior is exhibited in insects, birds and mammals. Typically, males are more likely to desert, but both males and females have been observed to practice mate desertion.

<i>Amatitlania</i> Genus of fishes

Amatitlania is a genus of cichlid fishes native to freshwater habitats in Central America from El Salvador and Guatemala to Panama. They are fairly small cichlids, typically reaching up to 6.4–10 cm (2.5–4 in) in standard length depending on exact species, although captives may grow larger.

<i>Amatitlania septemfasciata</i> Species of fish

Amatitlania septemfasciata is a fish species in the cichlid family. It is found on the Atlantic slope of Costa Rica, between the San Juan River drainage and the Banano River. Several currently recognized cichlid species within the genus Amatitlania were formerly considered varieties of Amatitlania septumfasciata, including Amatitlania myrnae, the Topaz Cichlid, and Amatitlania cutteri.

<span class="mw-page-title-main">Mango tilapia</span> Species of fish

The mango tilapia is a species of fish from the cichlid family that is native to fresh and brackish waters in Africa and the Levant. Other common names include Galilaea tilapia, Galilean comb, Galilee St. Peter's fish, and St. Peter's fish. This is a relatively large cichlid at up to 41 centimetres (16 in) in total length and about 1.6 kilograms (3.5 lb) in weight. It is very important to local fisheries and the species is also aquacultured.

Aggression refers to negative behavior or attitudes toward another, mainly by applying physical force. Evolution on the other hand, is any process of formation or development of something like habit, trait or character in a population from generation to generation. Evolution can explain why fish exhibit aggression because it is a simple emotion. This emotion increases an individual's survival or reproduction. Aggressive behavior can derive in fish species due to territory, sex specific selection and genetic variation. There is no specific fish species who display invasive behavior. Almost all fish are aggressive sometimes in their lives depending on their surroundings.

Vertebrate maternal behavior is a form of parental care that is specifically given to young animals by their mother in order to ensure the survival of the young. Parental care is a form of altruism, which means that the behaviors involved often require a sacrifice that could put their own survival at risk. This encompasses behaviors that aid in the evolutionary success of the offspring and parental investment, which is a measure of expenditure exerted by the parent in an attempt to provide evolutionary benefits to the offspring. Therefore, it is a measure of the benefits versus costs of engaging in the parental behaviors. Behaviors commonly exhibited by the maternal parent include feeding, either by lactating or gathering food, grooming young, and keeping the young warm. Another important aspect of parental care is whether the care is provided to the offspring by each parent in a relatively equal manner, or whether it is provided predominantly or entirely by one parent. There are several species that exhibit biparental care, where behaviors and/or investment in the offspring is divided equally amongst the parents. This parenting strategy is common in birds. However, even in species who exhibit biparental care, the maternal role is essential since the females are responsible for the incubation and/or delivery of the young.

References

  1. Lyons, T.J.; Matamoros, W.A.; Angulo, A. (2020). "Amatitlania nigrofasciata". IUCN Red List of Threatened Species . 2020: e.T18242362A150106977. doi: 10.2305/IUCN.UK.2020-2.RLTS.T18242362A150106977.en . Retrieved 19 November 2021.
  2. 1 2 3 4 5 6 7 8 Froese, Rainer; Pauly, Daniel (eds.) (2006). "Archocentrus nigrofasciatus" in FishBase . April 2006 version.
  3. ITIS Report. "Archocentrus nigrofasciatus". Integrated Taxonomic Information System. Retrieved 2007-03-30.
  4. Robins, C. R., et al. (1991). World fishes important to North Americans exclusive of species from the continental waters of the United States and Canada. Am. Fish. Soc. Spec. Publ.21: p. 243.
  5. Günther, A. (1866). On the fishes of the states of Central America, founded upon specimens collected in fresh and marine waters of various parts of that country by Messrs. Salvin and Godman and Capt. J. M. Dow. Proc. Zool. Soc. Lond. 600–604.
  6. 1 2 3 4 "Convict and Jack Dempsey placed in new genera". Archived from the original on December 28, 2007. Retrieved 2008-06-27.
  7. Heijns, W. (July 2009). "Central American heroine cichlids, a phylogenetic approach". Cichlid News. pp. 14–22.
  8. Heijns, W. (2001). A convict from the Volcano The Cichlid Room Companion Ed. J. M. A. Azas.
  9. Azas, J. M. A. (2002). Cryptoheros, The Small Central American Cichlids The Cichlid Room Companion Ed. J. M. A. Azas.
  10. McMahan, C.D.; Matamoros, W.A.; Barraza, E.; Kutz, K.; Chakrabarty, P. (2014). "Taxonomic Status of the Lago Coatepeque Endemic Convict Cichlid Amatitlania coatepeque (Teleostei: Cichlidae)". Copeia. 2014 (4): 633–638. doi:10.1643/CI-13-153. S2CID   83876909.
  11. Froese, R. and D. Pauly. Editors. "Archocentrus nigrofasciatus, synonyms". FishBase. Retrieved 2007-03-30.{{cite web}}: |author= has generic name (help)[ dead link ]
  12. 1 2 Juan Miguel Artigas Azas. "Cryptoheros nigrofasciatus (Günther, 1867)". The Cichlid Room Companion . Retrieved 2007-03-30.
  13. Innes, W. (1966). Exotic Aquarium Fishes . p.  395.
  14. 1 2 3 4 5 6 Wisenden, B. D. (1995). Reproductive behavior of free-ranging convict cichlids, Cichlasoma nigrofasciatum. Archived 2016-12-25 at the Wayback Machine Environmental Biology of Fishes43: 121–134.
  15. 1 2 3 4 5 Riehl, R.; Baensch, H. A. (1996). Aquarium Atlas (5th ed.). Germany: Tetra Press. ISBN   978-3-88244-050-8.
  16. 1 2 3 4 Sands, D. A Fishkeeper's Guide to Central American Cichlids. Tetra Press. Belgium. 1994. pp 59–60.
  17. Kullander, S.O., 2003. Cichlidae (Cichlids). p. 605–654. In: R.E. Reis, S.O. Kullander and C.J. Ferraris, Jr. (eds.) Checklist of the Freshwater Fishes of South and Central America. Porto Alegre: EDIPUCRS, Brasil.
  18. Itzkovich, J., et al. (1981). Inheritance of pink body colouration in Cichlasoma nigrofasciatum Günther (Pisces, Cichlidae). Genetica55: 15–16.
  19. Conkel, D. Cichlids of North and Central America. T.F.H. Publications, Inc., USA. 1993.
  20. 1 2 3 4 Loiselle, P. V. (1995). The Cichlid Aquarium. Germany: Tetra Press. ISBN   978-1-56465-146-4.
  21. Koehn, J. D. and R. F. MacKenzie. (2004). Priority management actions for alien freshwater fish species in Australia. New Zealand Journal of Marine and Freshwater Research38: 457–472.
  22. "The convict cichlid Amatitlania nigrofasciata (Cichlidae): first record of this non-native species in Western Australian waterbodies | Western Australian Museum". Western Australian Museum. Retrieved 2016-03-29.
  23. Herrera-R, Guido A.; Murcia-Castillo, Miguel A.; Prada-Pedreros, Saúl (2016-07-20). "First record of Amatitlania nigrofasciata (Günther, 1867) (Cichliformes: Cichlidae) as introduced species in natural freshwaters of Colombia". Check List. 12 (4): 1932. doi: 10.15560/12.4.1932 . ISSN   1809-127X.
  24. "九間魚壓境 恐成日月潭最強勢外來種". 1 December 2011. Archived from the original on 24 December 2011. Retrieved 24 May 2012.
  25. Yamamoto, M. N. and A. W. Tagawa. Hawai'i's Native and Exotic Freshwater Animals. Mutual Publishing, Honolulu, Hawaii. 2000. p. 200
  26. Page, L. M. and B. M. Burr. A Field Guide to Freshwater Fishes of North America North of Mexico. Houghton Mifflin Company, Boston. 1991. p. 432
  27. Hulsey, C. D.; Garcia De Leon, F. J. (2005). "Cichlid jaw mechanics: Linking morphology to feeding specialization". Functional Ecology. 19 (3): 487. doi: 10.1111/j.1365-2435.2005.00987.x .
  28. Earley, R. L., L. S. Blumer, and M. S. Grober. (2004). The gall of subordination: changes in gall bladder function associated with social stress. Proceedings of the Royal Society B: Biological Sciences271: 7–13.
  29. Keenleyside, M. H. A. Parental Care. In: Cichlid Fishes: Behavior, Ecology and Evolution. Chapman and Hall, London. 1991. pp. 191–208.
  30. Reebs, S.G.; Colgan, P.W. (1991). "Nocturnal care of eggs and circadian rhythms of fanning activity in two normally diurnal cichlid fishes, Cichlasoma nigrofasciatum and Herotilapia multispinosa". Animal Behaviour. 41 (2): 303–311. doi:10.1016/S0003-3472(05)80482-8. S2CID   53180421.
  31. Reebs, S.G.; Colgan, P.W. (1992). "Proximal cues for nocturnal egg care in convict cichlids, Cichlasoma nigrofasciatum". Animal Behaviour. 43 (2): 209–214. doi:10.1016/S0003-3472(05)80216-7. S2CID   54354644.
  32. Reebs, S.G. (1994). "Nocturnal mate recognition and nest guarding by female convict cichlids (Pisces, Cichlidae: Cichlasoma nigrofasciatum)". Ethology. 96 (4): 303–312. doi:10.1111/j.1439-0310.1994.tb01018.x.
  33. Noakes, D. L. G. Ontogeny of behavior in cichlids. In: Cichlid Fishes: Behavior, Ecology and Evolution Chapman and Hall, London. 1991 pp. 209–224.
  34. Wisenden, B. D. (1994). Factors affecting mate desertion by males in free-ranging convict cichlids (Cichlasoma nigrofasciatum). Behavioral Ecology 5(4), 439–447.
  35. Reebs, S.G. (1994). "The anticipation of night by fry-retrieving convict cichlids". Animal Behaviour. 48: 89–95. doi:10.1006/anbe.1994.1214. S2CID   53187661.
  36. Lavery, R.J.; Reebs, S.G. (1994). "Effect of mate removal on current and subsequent parental care in the convict cichlid (Pisces: Cichlidae)". Ethology. 97 (4): 265–277. doi:10.1111/j.1439-0310.1994.tb01046.x.
  37. Wisenden DB (1993)
  38. Gumm, J.M.; Itzkowitz, Murray (1 February 2007). "Pair-bond formation and breeding-site limitation in the convict cichlid, Archocentrus nigrofasciatus". Acta Ethol. 10: 29–33. doi:10.1007/s10211-007-0028-8. S2CID   12837363.
  39. 1 2 Gagliardi-Seeley, J.L.; Itzkowitz, M. (12 September 2006). "Male size predicts the ability to defend offspring in the biparental convict cichlid Archocentrus nigrofasciatus". Journal of Fish Biology. 69 (4): 1239–1244. doi:10.1111/j.1095-8649.2006.01174.x.
  40. Lehtonen, T.K.; Lindstrom, K. (29 February 2008). "Density-dependent sexual selection in the monogamous fish Archocentrus nigrofasciatus". Oikos. 117 (6): 867–874. doi:10.1111/j.0030-1299.2008.16677.x. S2CID   84131874.
  41. Gagliardi-Seeley, J.; Leese, J.; Santangelo, Nick; Itzkowitz, M. (May 2009). "Mate choice in female convict cichlids (Amatitlania nigrofasciata) and the relationship between male size and dominance". Journal of Ethology. 27 (2): 249–254. doi:10.1007/s10164-008-0111-2. S2CID   22258226.
  42. 1 2 3 4 Itzkowitz, M.; Santangelo, N.; Richter, M. (18 November 2000). "Parental division of labour and the shift from minimal to maximal role specializations: an examination using a biparental fish". Animal Behaviour. 61 (6): 1237–1245. doi:10.1006/anbe.2000.1724. S2CID   53195038.
  43. Alonzo, J.J.; McKaye, K.R.; van den Berghe, E.P. "Parental defense of young by the convict cichlid, Archocentrus nigrofasciatus, in Lake Xiloa, Nicaragua" (PDF). Journal of Aquariculture and Aquatic Sciences. 9: 208–228. Archived from the original (PDF) on 2013-10-29.
  44. Schleser, David M. (2002). Cichlids: Everything about Purchase, Care, Nutrition, Behavior, and Training. Barron's Educational Series.
  45. Fraser, S.A. (1993). "Aggressive behaviour among convict cichlid (Cichlasoma nigrofasciatum) fry of different sizes and its importance to brood adoption". Canadian Journal of Zoology. 12. 71 (12): 2358–2362. doi:10.1139/z93-331.
  46. Hamilton, Jasmine. "The Effects of Size Differential on Aggression in Female Convict Cichlids (Archocentrus nigrofasciatus)" (PDF). McNair Scholars Journal. 13: 94–106. Archived from the original (PDF) on 2016-03-05. Retrieved 2014-06-02.
  47. Barley, A.J. (1 December 2009). "Habitat structure directly affects aggression in convict cichlids Archocentrus nigrofasciatus" (PDF). Current Zoology. 56 (1): 52–56. doi: 10.1093/czoolo/56.1.52 .
  48. Ratnasabapathi, D. (1992). "Effects of temperature and prior residence on territorial aggression in the convict cichlid Cichlasoma nigrofasciatum". Aggressive Behavior. 18 (5): 365–372. doi:10.1002/1098-2337(1992)18:5<365::aid-ab2480180506>3.0.co;2-e.
  49. Mills D, Vevers G (1989) The Tetra encyclopedia of freshwater tropical aquarium fishes. Tetra Press, New Jersey.