Cutthroat flume

Last updated
Stainless steel Cutthroat flume Stainless steel Cutthroat flume.jpg
Stainless steel Cutthroat flume

The Cutthroat flume is a class of flow measurement flume developed during 1966/1967 that is used to measure the flow of surface waters, sewage flows, and industrial discharges. Like other flumes, the Cutthroat flume is a fixed hydraulic structure. Using vertical sidewalls throughout, the flume accelerates flow through a contraction of sidewalls until the flow reaches the "throat" of the flume, where the flow is then expanded. Unlike the Parshall flume, the Cutthroat flume lacks a parallel-walled throat section and maintains a flat floor throughout the flume. [1]

Contents

The design of the Cutthroat flume is standardized but not covered by a national or international standard (unlike the Parshall flume). The flumes are not patented and the discharge tables are not copyright protected.

A total of 16 standard sizes of Cutthroat flumes have been developed, covering flow ranges from 0.3536 gpm [0.0223 L/s] to 54,801 gpm [3,458 L/s]. [2]

Free-flow equation

Under free-flow conditions the depth of water at specified location upstream of the flume throat can be converted to a rate of flow.

The free-flow discharge can be summarized as [3]

Where

Both “K” and “n” vary by flume length alone.

Table 1 [4]

LengthThroat WidthCoefficient (C)Exponent (n)Free-Flow Length Coefficient
18"1"0.4942.1506.100
18"2"0.9742.1506.100
18"4"1.9752.1506.100
18"8"4.0302.1506.100
36"2"0.7191.8404.500
36"4"1.4591.8404.500
36"8"2.9701.8404.500
36"16"6.0401.8404.500
54"3"0.9601.7203.980
54"6"1.9601.7203.980
54"12"3.9801.7203.980
54"24"8.0101.7203.980
108"12"3.501.5603.500
108"24"7.111.5603.500
108"48"14.491.5603.500
108"12"22.01.5603.500

Submergence

Submergence transitions for Cutthroat flumes varies by flume length:

The submergence transition values for Cutthroat flumes are generally better than those for similarly sized Parshall flumes – an advantage in flat gradient channels where downstream hydraulics may increase the submergence ratio in the flume. [5]

Unlike the Parshall flume, the secondary point of measurement, Hb, in the Cutthroat flume is located away from the throat section, making the determination of the level relatively easy. [6]

Development

The Cutthroat flume was developed during the 1966-67s at the Utah Water Research Laboratory, Utah State, Logan, Utah by Skogerboe, Hyatt, Anderson, and Eggleston. The result of these efforts was a flume that is simple in form and construction and that is well suited for use in flat gradient (low slope) applications.

Design

Cutthroat flumes lack a parallel-wall throat section (hence the name) and has a flat-bottom to allow for installation in flat gradient channels. From the top, the Cutthroat flume has an hourglass look similar to the Parshall flume, with which it is sometimes confused.

The walls of a Cutthroat flume are vertical, like Parshall and HS / H / HL flumes. The approach section walls contract uniformly at a 3:1 ratio, while the discharge section walls expand at a 6:1 ratio. The point at with the approach and discharge section walls meet is termed the “throat” of the Cutthroat flume.

The primary point of measurement, Ha, occurs at a point upstream of the flume throat and can be determined by the equation

Where L is flume length.

The secondary point of measurement, Hb, occurs at a point downstream of the flume throat and can be determined by the equation

Where L is flume length.

Advantages

Disadvantages

Standard sizes

Four standard lengths of the Cutthroat flume have been developed, with four throat widths for each length.

Below are the standard flume lengths with their respective standard throat widths.

For a given length, Cutthroat flumes of intermediate throat widths can be developed without the need for laboratory testing. [10]

Where

Installation

As with the Parshall flume, the initial applications for Cutthroat flumes were envisioned to be measuring flows in irrigation channels and other surface waters.

Again, like the Parshall flume, the Cutthroat flume has proven to be applicable to a range of open channel flows including:

Related Research Articles

In thermal fluid dynamics, the Nusselt number is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection and diffusion (conduction). The conductive component is measured under the same conditions as the convective but for a hypothetically motionless fluid. It is a dimensionless number, closely related to the fluid's Rayleigh number.

<span class="mw-page-title-main">Stream gauge</span> Location used to monitor surface water flow

A stream gauge, streamgage or stream gauging station is a location used by hydrologists or environmental scientists to monitor and test terrestrial bodies of water. Hydrometric measurements of water level surface elevation ("stage") and/or volumetric discharge (flow) are generally taken and observations of biota and water quality may also be made. The locations of gauging stations are often found on topographical maps. Some gauging stations are highly automated and may include telemetry capability transmitted to a central data logging facility.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">Weir</span> Artificial river barrier

A weir or low head dam is a barrier across the width of a river that alters the flow characteristics of water and usually results in a change in the height of the river level. Weirs are also used to control the flow of water for outlets of lakes, ponds, and reservoirs. There are many weir designs, but commonly water flows freely over the top of the weir crest before cascading down to a lower level.

<span class="mw-page-title-main">Sluice</span> Water channel controlled at its head by a gate

Sluice is a word for a channel controlled at its head by a movable gate which is called a sluice gate. A sluice gate is traditionally a wood or metal barrier sliding in grooves that are set in the sides of the waterway and can be considered as a bottom opening in a wall. Sluice gates are one of the most common hydraulic structures in controlling flow rate and water level in open channels such as rivers and canals. They also could be used to measure the flow. A water channel containing a sluice gate forms a type of lock to manage the water flow and water level. It can also be an open channel which processes material, such as a River Sluice used in gold prospecting or fossicking. A mill race, leet, flume, penstock or lade is a sluice channeling water toward a water mill. The terms sluice, sluice gate, knife gate, and slide gate are used interchangeably in the water and wastewater control industry. They are also used in wastewater treatment plants and to recover minerals in mining operations, and in watermills.

<span class="mw-page-title-main">Volumetric flow rate</span> Volume of fluid which passes per unit time

In physics and engineering, in particular fluid dynamics, the volumetric flow rate is the volume of fluid which passes per unit time; usually it is represented by the symbol Q. It contrasts with mass flow rate, which is the other main type of fluid flow rate. In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge.

In hydrology, discharge is the volumetric flow rate of water that is transported through a given cross-sectional area. It includes any suspended solids, dissolved chemicals, or biologic material in addition to the water itself. Terms may vary between disciplines. For example, a fluvial hydrologist studying natural river systems may define discharge as streamflow, whereas an engineer operating a reservoir system may equate it with outflow, contrasted with inflow.

<span class="mw-page-title-main">Flume</span> Human-made channel for water

A flume is a human-made channel for water, in the form of an open declined gravity chute whose walls are raised above the surrounding terrain, in contrast to a trench or ditch. Flumes are not to be confused with aqueducts, which are built to transport water, rather than transporting materials using flowing water as a flume does. Flumes route water from a diversion dam or weir to a desired materiel collection location. Flumes are usually made up of wood, metal or concrete.

An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow.

<span class="mw-page-title-main">Hydraulic head</span> Specific measurement of liquid pressure above a vertical datum

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum.

The Manning formula or Manning's equation is an empirical formula estimating the average velocity of a liquid flowing in a conduit that does not completely enclose the liquid, i.e., open channel flow. However, this equation is also used for calculation of flow variables in case of flow in partially full conduits, as they also possess a free surface like that of open channel flow. All flow in so-called open channels is driven by gravity.

Drainage density is a quantity used to describe physical parameters of a drainage basin. First described by Robert E. Horton, drainage density is defined as the total length of channel in a drainage basin divided by the total area, represented by the following equation:

The river regime generally describes the character of the typical fluctuations of flow of a river, but can also refer to the mathematical relationship between the river discharge and its width, depth and slope. Thus, "river regime" can describe one of two characteristics of a reach of an alluvial river:

<span class="mw-page-title-main">Stream power</span>

Stream power originally derived by R. A. Bagnold in the 1960s is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the slope of that water. There are many forms of the stream power formula with varying utilities such as comparing rivers of various widths or quantify the energy required to move sediment of a certain size. Stream power is closely related to various other criterion such as stream competency and shear stress. Stream power is a valuable measurement for hydrologists and geomorphologist tackling sediment transport issues as well as for civil engineers using it in the planning and construction of roads, bridges, dams, and culverts.

Flow conditioning ensures that the “real world” environment closely resembles the “laboratory” environment for proper performance of inferential flowmeters like orifice, turbine, coriolis, ultrasonic etc.

<span class="mw-page-title-main">Parshall flume</span> Hydraulic structure for measuring fluid flow

The Parshall flume is an open channel flow metering device that was developed to measure the flow of surface waters and irrigation flows. The Parshall flume is a fixed hydraulic structure. It is used to measure volumetric flow rate in industrial discharges, municipal sewer lines, and influent/effluent flows in wastewater treatment plants. The Parshall flume accelerates flow through a contraction of both the parallel sidewalls and a drop in the floor at the flume throat. Under free-flow conditions the depth of water at specified location upstream of the flume throat can be converted to a rate of flow. Some states specify the use of Parshall flumes, by law, for certain situations.

<span class="mw-page-title-main">Open channel spillway</span>

Open channel spillways are dam spillways that utilize the principles of open-channel flow to convey impounded water in order to prevent dam failure. They can function as principal spillways, emergency spillways, or both. They can be located on the dam itself or on a natural grade in the vicinity of the dam.

<span class="mw-page-title-main">Montana flume</span>

A Montana flume, is a popular modification of the standard Parshall flume. The Montana flume removes the throat and discharge sections of the Parshall flume, resulting a flume that is lighter in weight, shorter in length, and less costly to manufacture. Montana flumes are used to measure surface waters, irrigations flows, industrial discharges, and wastewater treatment plant flows.

<span class="mw-page-title-main">Palmer-Bowlus Flume</span>

The Palmer-Bowlus flume, is a class of flumes commonly used to measure the flow of wastewater in sewer pipes and conduits. The Palmer-Bowlus flume has a u-shaped cross-section and was designed to be inserted into, or in line with, pipes and u-channels found in sanitary sewer applications.

This article is about flow in partially full conduits.

References

  1. "Converting a Fabricated Cutthroat Flume Into a Discharge Measuring Instrument" (PDF). International Irrigation Management Institute. Retrieved 2013-06-10.
  2. "Cutthroat Flumes for Flow Measurement". Openchannelflow.
  3. "Sampling Guide for Environmental Analysis" (PDF). Centre d'expertise en analyse environnementale du Quebec. Archived from the original (PDF) on 2013-04-23.
  4. "Flow Characteristics of Cutthroat Flumes".
  5. "Cutthroat Flume Submergence".
  6. "Hb Location in Cutthroat Flumes".
  7. "Flow Measurement Devices" (PDF). Utah Division of Water Rights. Retrieved 2013-06-10.
  8. "Discharge Measurement Structures, Third Edition, Publication 20" (PDF).
  9. "Don't Get Stuck: Sanitary Flows in Flumes".
  10. "Custom Size Cutthroat Flumes".

Further reading