De novo domestication

Last updated

De novo domestication is a process where new species are genetically altered to meet human needs, such as agriculture or companionship. It is performed both by farmers and scientists, and can be done through traditional selective breeding or modern biotechnological methods. Targets for de novo domestication are often species that have never been under cultivation, but may also include wild relatives of already domesticated species.

Contents

Definition

De novo domestication refers to the process by which wild species are intentionally transformed into domesticated varieties. [1] The majority of domesticated species has been under domestication for millenia, with the first animal, the dog, having been under domestication for between 40,000-30,000 years, and the first plants since the start of the Neolithic Revolution, approximately 12,000 years ago. [2] [3] This initial process of domestication is hypothesized to have been a passive process, resulting from the subconcious selection of individuals performing better in agricultural contexts. [4] The scientific field of de novo domestication seeks to domesticate new species in an accelerated manner as opposed to over the course of thousands of years, as more domesticated species may provide an advantage to humanity, especially in agriculture. [1] Newly domesticated crop species may allow for alternatives to agricultural extensification in regions where yields are plateauing, make agricultural systems more resilient to climate change, and increase the sustainability of agriculture. [5] [6] [7]

It is important to note that de novo domestication does not only happen in a scientific context, but that the active domestication of new species is also performed by farmers, especially in the Global South. The collection and subsequent agricultural integration of traditionally wild-gathered food plants still happens to this day, and also constitutes de novo domestication. [8]

The terminology in the scientific field of domestication is improperly standardized, with the same term meaning different things to different scientists. [9] This means that in some cases, de novo domestication is solely used for species that have no history of domestication, while in other cases, it can be used to describe further studies into semi-domesticated crops, which already have gone through (early) stages of domestication. [10]

In plants

The study of de novo domestication is most prevalent in plants, due to the implications new crops may bring to agriculture. There are two potential applications to the study of de novo domestication in plant sciences: the introduction of novel crops into agricultural systems and the redomestication of wild relatives of conventionally domesticated crops. [1]

Novel species

A nursery in a project aiming at the de novo domestication of Thinopyrum intermedium (intermediate wheatgrass), a perennial grain. Thinopyrum intermedium first year nursery.JPG
A nursery in a project aiming at the de novo domestication of Thinopyrum intermedium (intermediate wheatgrass), a perennial grain.

The introduction of novel species into agricultural systems has the potential to radically alter their workings. One set of candidates for de novo domestication perennial grains, cereal crops that can be harvested for multiple seasons after planting, as opposed to the annual grains that dominate agriculture. [11] The succesfull de novo domestication of a perennial grain would drastically reduce the need for yearly plowing, seedling protection and energy spent on reaching maturity, thus decreasing environmental impact and labour use. [7] The de novo domestication of tropical fruit trees is suggested to be able to help address 14 out of 17 of the Sustainable Development Goals set by the United Nations, either directly or indirectly. [12]

Redomestication

Another use for de novo domestication is the redomestication of wild relatives of domesticated crops. Through millennia under selection, most domesticated crops have undergone many genetic bottlenecks, drastically reducing their genetic diversity, and thus the ability to breed in new traits. [13] Meanwhile, these bottlenecked crops have been spread over the entire world, and are often grown in areas with climates that differ significantly from their genetic center of origin. [14] Redomestication of crop wild relatives may offer a solution to long-term, repetitive plant breeding projects seeking to integrate wild relative DNA from the center of origin into established hybrid cultivars. [1] [15] [16] This is especially relevant for crops that are reproductively incompatible with their wild relatives through processes such as polyploidization, such as hexaploid wheat, where integration of wild relative DNA through traditional breeding projects is difficult. [17]

In animals

Lyudmila Trut with a domesticated silver fox, 1974 L. Trut and domestic Fox-1974.jpg
Lyudmila Trut with a domesticated silver fox, 1974

The de novo domestication of animals has less scientific traction than that of plants, but one notable project is that undertaken by the Russian Institute of Cytology and Genetics to domesticate the fox. [18] This project aimed to study the theory of evolution and domestication syndrome by attempting the domestication of foxes, but was not primarily aimed at providing a new domesticated animal. [18] De novo domestication of fish, either in the ornamental aquarium trade or for the purposes of pisciculture is also ongoing. [19] [20]

In fungi

Fungiculture, the cultivation of fungi such as mushrooms, has historically been less important than horticulture or animal husbandry in providing food for humans. Mushrooms were often gathered from the wild, but the knowledge to do so has largely disappeared in the Global North due to lifestyle changes and urbanization, prompting an increased need for mushroom cultivation. [21] As a result, many fungi were de novo domesticated, such as snow fungus (1866), oyster mushroom (1917), and milky white mushroom (1974). [22] [23] A fungus that has been notoriously difficult to bring under cultivation is white truffle, and projects to de novo domesticate it are running. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Quinoa</span> Edible plant in the family Amaranthaceae

Quinoa is a flowering plant in the amaranth family. It is a herbaceous annual plant grown as a crop primarily for its edible seeds; the seeds are rich in protein, dietary fiber, B vitamins and dietary minerals in amounts greater than in many grains. Quinoa is not a grass but rather a pseudocereal botanically related to spinach and amaranth, and originated in the Andean region of northwestern South America. It was first used to feed livestock 5,200–7,000 years ago, and for human consumption 3,000–4,000 years ago in the Lake Titicaca basin of Peru and Bolivia.

<i>Sorghum</i> Genus of flowering plants

Sorghum or broomcorn is a genus of about 25 species of flowering plants in the grass family (Poaceae). Some of these species are grown as cereals for human consumption, in pastures for animals as fodder, and as bristles for brooms. Sorghum grain is a nutritious food rich in protein, dietary fiber, B vitamins, and minerals.

<span class="mw-page-title-main">Einkorn wheat</span> Primitive wheat

Einkorn wheat can refer either to a wild species of wheat (Triticum) or to its domesticated form. The wild form is T. boeoticum, and the domesticated form is T. monococcum. Einkorn is a diploid species of hulled wheat, with tough glumes ('husks') that tightly enclose the grains. The cultivated form is similar to the wild, except that the ear stays intact when ripe and the seeds are larger. The domestic form is known as "petit épeautre" in French, "Einkorn" in German, "einkorn" or "littlespelt" in English, "piccolo farro" in Italian and "escanda menor" in Spanish. The name refers to the fact that each spikelet contains only one grain.

<span class="mw-page-title-main">Emmer</span> Type of wheat

Emmer wheat or hulled wheat is a type of awned wheat. Emmer is a tetraploid. The domesticated types are Triticum turgidum subsp. dicoccum and T. t. conv. durum. The wild plant is called T. t. subsp. dicoccoides. The principal difference between the wild and the domestic forms is that the ripened seed head of the wild plant shatters and scatters the seed onto the ground, while in the domesticated emmer, the seed head remains intact, thus making it easier for humans to harvest the grain.

<span class="mw-page-title-main">Domestication</span> Selective breeding of plants and animals to serve humans

Domestication is a multi-generational mutualistic relationship between humans and other organisms, in which humans took over control and care to obtain a steady supply of resources including food. The process was gradual and geographically diffuse, based on trial and error.

<i>Cicer</i> Genus of flowering plants

Cicer is a genus of the legume family, Fabaceae, and the only genus found in tribe Cicereae. It is included within the IRLC, and its native distribution is across the Middle East and Asia. Its best-known and only domesticated member is Cicer arietinum, the chickpea.

<span class="mw-page-title-main">Cowpea</span> Species of plant

The cowpea is an annual herbaceous legume from the genus Vigna. Its tolerance for sandy soil and low rainfall have made it an important crop in the semiarid regions across Africa and Asia. It requires very few inputs, as the plant's root nodules are able to fix atmospheric nitrogen, making it a valuable crop for resource-poor farmers and well-suited to intercropping with other crops. The whole plant is used as forage for animals, with its use as cattle feed likely responsible for its name.

<span class="mw-page-title-main">Pearl millet</span> Species of cultivated grass

Pearl millet is the most widely grown type of millet. It has been grown in Africa and the Indian subcontinent since prehistoric times. The center of diversity, and suggested area of domestication, for the crop is in the Sahel zone of West Africa. Recent archaeobotanical research has confirmed the presence of domesticated pearl millet on the Sahel zone of northern Mali between 2500 and 2000 BC. 2023 was the International Year of Millets, declared by the United Nations General Assembly in 2021.

<span class="mw-page-title-main">Founder crops</span> Original agricultural crops

The founder crops or primary domesticates are a group of flowering plants that were domesticated by early farming communities in Southwest Asia and went on to form the basis of agricultural economies across Eurasia. As originally defined by Daniel Zohary and Maria Hopf, they consisted of three cereals, four pulses, and flax. Subsequent research has indicated that many other species could be considered founder crops. These species were amongst the first domesticated plants in the world.

Fungiculture is the cultivation of fungi such as mushrooms. Cultivating fungi can yield foods, medicine, construction materials and other products. A mushroom farm is involved in the business of growing fungi.

<span class="mw-page-title-main">History of agriculture</span>

Agriculture began independently in different parts of the globe, and included a diverse range of taxa. At least eleven separate regions of the Old and New World were involved as independent centers of origin. The development of agriculture about 12,000 years ago changed the way humans lived. They switched from nomadic hunter-gatherer lifestyles to permanent settlements and farming.

<span class="mw-page-title-main">Taxonomy of wheat</span> Classification of wheat

During 10,000 years of cultivation, numerous forms of wheat, many of them hybrids, have developed under a combination of artificial and natural selection. This diversity has led to much confusion in the naming of wheats. Genetic and morphological characteristics of wheat influence its classification; many common and botanical names of wheat are in current use.

<i>Sorghum bicolor</i> Species of plant

Sorghum bicolor, commonly called sorghum and also known as great millet, broomcorn, guinea corn, durra, imphee, jowar, or milo, is a grass species cultivated for its grain, which is used for food for humans, animal feed, and ethanol production. Sorghum originated in Africa, and is now cultivated widely in tropical and subtropical regions. Sorghum is the world's fifth-most important cereal crop after rice, wheat, maize, and barley, with 61,000,000 metric tons of annual global production in 2021. S. bicolor is typically an annual, but some cultivars are perennial. It grows in clumps that may reach over 4 metres (13 ft) high. The grain is small, ranging from 2 to 4 millimetres in diameter. Sweet sorghums are sorghum cultivars that are primarily grown for forage, syrup production, and ethanol; they are taller than those grown for grain.

<span class="mw-page-title-main">Triticeae</span> Tribe of grasses

Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat, barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.

<i>Chenopodium berlandieri</i> Species of edible flowering plant

Chenopodium berlandieri, also known by the common names pitseed goosefoot, lamb's quarters, and huauzontle (Nahuatl) is an annual herbaceous plant in the family Amaranthaceae.

<span class="mw-page-title-main">Genetic pollution</span> Problematic gene flow into wild populations

Genetic pollution is a term for uncontrolled gene flow into wild populations. It is defined as "the dispersal of contaminated altered genes from genetically engineered organisms to natural organisms, esp. by cross-pollination", but has come to be used in some broader ways. It is related to the population genetics concept of gene flow, and genetic rescue, which is genetic material intentionally introduced to increase the fitness of a population. It is called genetic pollution when it negatively impacts the fitness of a population, such as through outbreeding depression and the introduction of unwanted phenotypes which can lead to extinction.

<i>Thinopyrum intermedium</i> Species of flowering plant

Thinopyrum intermedium, known commonly as intermediate wheatgrass, is a sod-forming perennial grass in the Triticeae tribe of Pooideae native to Europe and Western Asia. It is part of a group of plants commonly called wheatgrasses because of the similarity of their seed heads or ears to common wheat. However, wheatgrasses generally are perennial, while wheat is an annual. It has gained the Royal Horticultural Society's Award of Garden Merit as an ornamental.

<span class="mw-page-title-main">Perennial rice</span> Varieties of rice that can grow season after season without re-seeding

Perennial rice are varieties of long-lived rice that are capable of regrowing season after season without reseeding; they are being developed by plant geneticists at several institutions. Although these varieties are genetically distinct and will be adapted for different climates and cropping systems, their lifespan is so different from other kinds of rice that they are collectively called perennial rice. Perennial rice—like many other perennial plants—can spread by horizontal stems below or just above the surface of the soil but they also reproduce sexually by producing flowers, pollen and seeds. As with any other grain crop, it is the seeds that are harvested and eaten by humans.

<span class="mw-page-title-main">Perennial grain</span> Grain crops that remain productive for two or more years without replanting

A perennial grain is a grain crop that lives and remains productive for two or more years, rather than growing for only one season before harvest, like most grains and annual crops. While many fruit, nut and forage crops are long-lived perennial plants, all major grain crops presently used in large-scale agriculture are annuals or short-lived perennials grown as annuals. Scientists from several nations have argued that perennial versions of today's grain crops could be developed and that these perennial grains could make grain agriculture more sustainable.

Perennial crops are a perennial plant species that are cultivated and live longer than two years without the need of being replanted each year. Naturally perennial crops include many fruit and nut crops; some herbs and vegetables also qualify as perennial. Perennial crops have been cultivated for thousands of years; their cultivation differs from the mainstream annual agriculture because regular tilling is not required and this results in decreased soil erosion and increased soil health. Some perennial plants that are not cultivated as perennial crops are tomatoes, whose vines can live for several years but often freeze and die in winters outside of temperate climates, and potatoes which can live for more than two years but are usually harvested yearly. Despite making up 94% of plants on earth, perennials take up only 13% of global cropland. In contrast, grain crops take up about 70% of global cropland and global caloric consumption and are largely annual plants.

References

  1. 1 2 3 4 Fernie, A.R.; Yan, J. (2019). "De novo domestication: an alternative route toward new crops for the future". Molecular Plant. 12 (5): 615-631. doi:10.1016/j.molp.2019.03.016. PMID   30999078.
  2. Irving-Pease, E.K.; Ryan, H.; Jamieson, A.; Dimopoulos, E. A.; Larson, G.; Frantz, L. A. (2019). Paleogenomics: genome-scale analysis of ancient DNA. pp. 225–272.
  3. Purugganan, M. D.; Fuller, D. Q. (2009). "The nature of selection during plant domestication". Nature. 457 (7231): 843–848. Bibcode:2009Natur.457..843P. doi:10.1038/nature07895. PMID   19212403.
  4. Doebley, J. F.; Gaut, B. S.; Smith, B. D. (2006). "The molecular genetics of crop domestication". Cell. 127 (7): 1309–1321. doi:10.1016/j.cell.2006.12.006.
  5. Ray, D. K.; Ramankutty, N.; Mueller, N. D.; West, P. C.; Foley, J. A. (2012). "Recent patterns of crop yield growth and stagnation". Nature Communications. 3 (1): 1293. Bibcode:2012NatCo...3.1293R. doi:10.1038/ncomms2296. PMID   23250423.
  6. Lambein, F.; Travella, S.; Kuo, Y. H.; Van Montagu, M.; Heijde, M. (2019). "Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food?". Planta. 250 (3): 821–838. Bibcode:2019Plant.250..821L. doi:10.1007/s00425-018-03084-0. PMID   30719530.
  7. 1 2 DeHaan, L.; Larson, S.; López-Marqués, R. L.; Wenkel, S.; Gao, C.; Palmgren, M. (2020). "Roadmap for accelerated domestication of an emerging perennial grain crop". Trends in Plant Science. 25 (6): 525–537. doi:10.1016/j.tplants.2020.02.004.
  8. Bharucha, Z.; Pretty, J. (2010). "The roles and values of wild foods in agricultural systems". Philosophical Transactions of the Royal Society B: Biological Sciences. 365 (1554): 2913–2926. doi:10.1098/rstb.2010.0123 . Retrieved 4 May 2024.
  9. Awodoyin, R. O.; Olubode, O. S.; Ogbu, J. U.; Balogun, R. B.; Nwawuisi, J. U.; Orji, K. O. (2015). "Indigenous fruit trees of tropical Africa: Status, opportunity for development and biodiversity management". Agricultural Sciences. 6 (1): 31. doi: 10.4236/as.2015.61004 .
  10. Zhang, J.; Yu, H.; Li, J. (2023). "De novo domestication: retrace the history of agriculture to design future crops". Current Opinion in Biotechnology. 81: 102946. doi:10.1016/j.copbio.2023.102946.
  11. Wagoner P, Schaeffer JR (1990-01-01). "Perennial grain development: Past efforts and potential for the future". Critical Reviews in Plant Sciences. 9 (5): 381–408. Bibcode:1990CRvPS...9..381W. doi:10.1080/07352689009382298.
  12. Leakey, R. R. B. (2017). Multifunctional Agriculture: Achieving sustainable development in Africa. Academic Press. pp. 417–420.
  13. Smýkal, P.; Nelson, M. N.; Berger, J. D.; Von Wettberg, E. J. (2018). "The impact of genetic changes during crop domestication". Agronomy. 8 (7): 119. doi: 10.3390/agronomy8070119 .
  14. Drewnowski, A.; Popkin, B. M. (1997). "The nutrition transition: new trends in the global diet". Nutrition Reviews. 55 (2): 31–43. doi:10.1111/j.1753-4887.1997.tb01593.x.
  15. Pisias, M. T.; Bakala, H. S.; McAlvay, A. C.; Mabry, M. E.; Birchler, J. A.; Yang, B.; Pires, J. C. (2022). "Prospects of feral crop de novo redomestication". Plant and Cell Physiology. 63 (11): 1641–1653. doi:10.1093/pcp/pcac072.
  16. Hanak, T.; Janjić, J.; Hay, F. R.; Brinch-Pedersen, H. (2023). "Genome editing to re-domesticate and accelerate use of barley crop wild relatives". Frontiers in Sustainable Food Systems. 7: 1331577. doi: 10.3389/fsufs.2023.1331577 .
  17. Zeibig, F.; Kilian, B.; Özkan, H.; Pantha, S.; Frei, M. (2024). "Phenotyping and identification of target traits for de novo domestication of wheat wild relatives". Food and Energy Security. 13 (1): e497. doi:10.1002/fes3.497.
  18. 1 2 Trut, Lyudmila (1999). "Early canid domestication: The farm-fox experiment". American Scientist . 87 (2): 160. Bibcode:1999AmSci..87.....T. doi:10.1511/1999.2.160. JSTOR   27857815.
  19. Teletcha, F. (2016). "Domestication level of the most popular aquarium fish species: is the aquarium trade dependent on wild populations" (PDF). Cybium. 40 (1): 21–29.
  20. Vandeputte, M.; Gagnaire, P. A.; Allal, F. (2019). "The European sea bass: a key marine fish model in the wild and in aquaculture". Animal Genetics. 50 (3): 195–206. doi:10.1111/age.12779.
  21. Grimm, D.; Wösten, H. A. (2018). "Mushroom cultivation in the circular economy". Applied Microbiology and Biotechnology. 102 (18): 7795–7803. doi:10.1007/s00253-018-9226-8. PMC   6132538 . PMID   30027491.
  22. Singh, R. P.; Mishra, K. K. (2008). "Mushroom Cultivation" (PDF). Plant Pathology.
  23. Jongman, M.; Khare, K. B.; Loeto, D. (2018). "Oyster mushroom cultivation at different production systems" (PDF). European Journal of Biomedical and Parmaceutical Sciences. 5 (5): 72–79.
  24. Zambonelli, A.; Iotti, M.; Puliga, F.; Hall, I. R. (2021). "Enhancing white truffle (Tuber magnatum Picco and T. borchii Vittad.) cultivation through biotechnology innovation". Advances in Plant Breeding Strategies: Vegetable Crops: Volume 10: Leaves, Flowerheads, Green Pods, Mushrooms and Truffles: 505–532. doi:10.1007/978-3-030-66969-0_14. ISBN   978-3-030-66968-3.