DiamondTouch

Last updated
DiamondTouch Table
Developer(s) Circle Twelve Inc, MERL
Operating system Microsoft Windows
Website http://www.circletwelve.com

The DiamondTouch table is a multi-touch, interactive PC interface product from Circle Twelve Inc. It is a human interface device that has the capability of allowing multiple people to interact simultaneously while identifying which person is touching where. [1] The technology was originally developed at Mitsubishi Electric Research Laboratories (MERL) in 2001 [2] and later licensed to Circle Twelve Inc in 2008. [3] The DiamondTouch table is used to facilitate face-to-face collaboration, brainstorming, and decision-making, and users include construction management company Parsons Brinckerhoff, [4] the Methodist Hospital, [5] and the US National Geospatial-Intelligence Agency (NGA). [6]

Contents

Overview

The DiamondTouch table is a front-projected interactive display that allows up to four users to sit face to face and work together on the same screen. [7] The DiamondTouch hardware enables a class of software known as "single-display groupware" [8] where collaborative work is supported by computer interfaces that allow participants to be physically close. While product literature [9] mentions consumer uses such as gaming, [10] customers of the DiamondTouch are using it for business and office applications. [11]

The principal feature that distinguishes the DiamondTouch table from other multi-touch interfaces, such as the Apple iPhone, HP TouchSmart, Microsoft Surface or do-it-yourself systems inspired by the work of Jeff Han, is that the DiamondTouch table can identify who is touching where. [12] DiamondTouch achieves this feature through capacitive coupling between a transmitter array located in the touch surface and separate receivers located in the chair of each user. [13]

The physical set-up of the system consists of the DiamondTouch device connected to a PC via USB cable, and a video projector suspended above the table and aimed down onto the touch surface. Cables connect chairs or receivers to the DiamondTouch unit. The current products have four receivers, thereby supporting one to four users. [9]

A software development kit (SDK) allows developers to build custom software applications using standard programming languages including C, C++, Java, ActiveX (for C#, DHTML, VB.NET) and Adobe Flash. A mouse emulator enables the operation of common software applications using multi-touch gestures for mouse functions (left button, middle button, right button and scroll wheel). A multi-user annotation software tool allows users to make mark-ups, selecting pen types from a pallet.

In September 2008, Circle Twelve introduced a software extension for the geospatial information systems (GIS) software ArcView from ESRI. [14] The software extension allows multi-user and multi-touch interactions in ArcView when used in conjunction with the DiamondTouch table. [11]

History

DiamondTouch technology was developed by Paul Dietz and Darren Leigh at MERL, and presented at the ACM Symposium on User Interface Software and Technology (UIST) in 2001. [2] The hardware complimented other Human-Computer Interaction (HCI) research, including the Personal Digital Historian [15] developed by Chia Shen and others at MERL, and led to developments in tabletop computing, [16] shared display groupware, and touch-based interaction. While the traditional computer interfaces (consisting of a mouse, keyboard and monitor) were originally designed to support individuals, the focus was to create a new type of computer interface to support face-to-face collaboration among small groups of people.

In 2003, MERL started a university loan program in which DiamondTouch tables were provided to universities for research purposes, and tabletop computing research built around DiamondTouch began at research groups including Stanford University, Carnegie Mellon University, Georgia Institute of Technology, and University of Tokyo, leading to research papers presented at academic conferences including UIST, ACM Conference on Human Factors in Computing Systems (CHI), ACM Conference on Computer Supported Cooperative Work (CSCW), and International Conference on Human-Computer Interaction (HCII). Research in the field led to the formation of the annual academic conference beginning in 2006 called Tabletop (initially, the IEEE International Workshop on Horizontal Interactive Human-Computer Systems or TableTop 2006, and most recently the ACM International Conference on Interactive Tabletops and Surfaces or Tabletop 2010).

DiamondTouch first appeared publicly at a cocktail reception at the 2004 Technology Entertainment Design (TED) conference [17] and soon after that at the first NextFest sponsored by Wired Magazine. [18] In 2006, MERL began selling the DiamondTouch table product commercially. In 2008, MERL licensed the DiamondTouch technology to Circle Twelve Inc, a company founded by MERL’s former VP of Business Development, Adam Bogue. [19]

Notable Research

See also

Related Research Articles

<span class="mw-page-title-main">Pointing device gesture</span>

In computing, a pointing device gesture or mouse gesture is a way of combining pointing device or finger movements and clicks that the software recognizes as a specific computer event and responds to accordingly. They can be useful for people who have difficulties typing on a keyboard. For example, in a web browser, a user can navigate to the previously viewed page by pressing the right pointing device button, moving the pointing device briefly to the left, then releasing the button.

Collaborative software or groupware is application software designed to help people working on a common task to attain their goals. One of the earliest definitions of groupware is "intentional group processes plus software to support them."

Computer-supported cooperative work (CSCW) is the study of how people utilize technology collaboratively, often towards a shared goal. CSCW addresses how computer systems can support collaborative activity and coordination. More specifically, the field of CSCW seeks to analyze and draw connections between currently understood human psychological and social behaviors and available collaborative tools, or groupware. Often the goal of CSCW is to help promote and utilize technology in a collaborative way, and help create new tools to succeed in that goal. These parallels allow CSCW research to inform future design patterns or assist in the development of entirely new tools.

<span class="mw-page-title-main">Tangible user interface</span>

A tangible user interface (TUI) is a user interface in which a person interacts with digital information through the physical environment. The initial name was Graspable User Interface, which is no longer used. The purpose of TUI development is to empower collaboration, learning, and design by giving physical forms to digital information, thus taking advantage of the human ability to grasp and manipulate physical objects and materials.

Computer-supported collaboration research focuses on technology that affects groups, organizations, communities and societies, e.g., voice mail and text chat. It grew from cooperative work study of supporting people's work activities and working relationships. As net technology increasingly supported a wide range of recreational and social activities, consumer markets expanded the user base, enabling more and more people to connect online to create what researchers have called a computer supported cooperative work, which includes "all contexts in which technology is used to mediate human activities such as communication, coordination, cooperation, competition, entertainment, games, art, and music".

<span class="mw-page-title-main">Powerwall</span> Large, ultra-high-resolution display

A powerwall is a large, ultra-high-resolution display that is constructed of a matrix of other displays, which may be either monitors or projectors. It is important to differentiate between powerwalls and displays that are just large, for example, the single projector display used in many lecture theatres. These displays rarely have a resolution higher than 1920 × 1080 pixels, and so present the same amount of information as on a standard desktop display. With Powerwall displays, users can view the display from a distance and see an overview of the data (context), but can also move to within arm’s length and see data in great detail (focus). This technique of moving around the display is known as physical navigation, and can help users to better understand their data.

<span class="mw-page-title-main">Multi-touch</span> Technology

In computing, multi-touch is technology that enables a surface to recognize the presence of more than one point of contact with the surface at the same time. The origins of multitouch began at CERN, MIT, University of Toronto, Carnegie Mellon University and Bell Labs in the 1970s. CERN started using multi-touch screens as early as 1976 for the controls of the Super Proton Synchrotron. Capacitive multi-touch displays were popularized by Apple's iPhone in 2007. Multi-touch may be used to implement additional functionality, such as pinch to zoom or to activate certain subroutines attached to predefined gestures using gesture recognition.

<span class="mw-page-title-main">Microsoft PixelSense</span> Interactive surface computing platform by Microsoft

Microsoft PixelSense was an interactive surface computing platform that allowed one or more people to use and touch real-world objects, and share digital content at the same time. The PixelSense platform consists of software and hardware products that combine vision based multitouch PC hardware, 360-degree multiuser application design, and Windows software to create a natural user interface (NUI).

<span class="mw-page-title-main">Jonathan Grudin</span> American computer scientist

Jonathan Grudin was a researcher at Microsoft from 1998 to 2022 and is affiliate professor at the University of Washington Information School working in the fields of human-computer interaction and computer-supported cooperative work. Grudin is a pioneer of the field of computer-supported cooperative work and one of its most prolific contributors. His collaboration distance to other researchers of human-computer interactions has been described by the "Grudin number". Grudin is also well known for the "Grudin Paradox" or "Grudin Problem", which states basically with respect to the design of collaborative software for organizational settings, "What may be in the managers' best interests may not be in the interests of individual contributors, and therefore not used." He was awarded the inaugural CSCW Lasting Impact Award in 2014 on the basis of this work. He has also written about the publication culture and history of human-computer interactions. His book From Tool to Partner, The Evolution of Human-Computer Interaction was published in 2017.

Group information management (GIM) is an extension of personal information management (PIM) "as it functions in more public spheres" as a result of peoples' efforts to share and co-manage information, and has been a topic of study for researchers in PIM, human–computer interaction (HCI), and computer supported cooperative work (CSCW). People acquire, organize, maintain, retrieve and use information items to support individual needs, but these PIM activities are often embedded in group or organizational contexts and performed with sharing in mind. The act of sharing moves personal information into spheres of group activity and also creates tensions that shape what and how the information is shared. The practice and the study of GIM focuses on this interaction between personal information and group contexts.

In computing, a natural user interface (NUI) or natural interface is a user interface that is effectively invisible, and remains invisible as the user continuously learns increasingly complex interactions. The word "natural" is used because most computer interfaces use artificial control devices whose operation has to be learned. Examples include voice assistants, such as Alexa and Siri, touch and multitouch interactions on today's mobile phones and tablets, but also touch interfaces invisibly integrated into the textiles furnitures.

<span class="mw-page-title-main">Human–computer interaction</span> Academic discipline studying the relationship between computer systems and their users

Human–computer interaction (HCI) is research in the design and the use of computer technology, which focuses on the interfaces between people (users) and computers. HCI researchers observe the ways humans interact with computers and design technologies that allow humans to interact with computers in novel ways. A device that allows interaction between human being and a computer is known as a "Human-computer Interface (HCI)".

Collaborative information seeking (CIS) is a field of research that involves studying situations, motivations, and methods for people working in collaborative groups for information seeking projects, as well as building systems for supporting such activities. Such projects often involve information searching or information retrieval (IR), information gathering, and information sharing. Beyond that, CIS can extend to collaborative information synthesis and collaborative sense-making.

The Human Media Lab(HML) is a research laboratory in Human-Computer Interaction at Queen's University's School of Computing in Kingston, Ontario. Its goals are to advance user interface design by creating and empirically evaluating disruptive new user interface technologies, and educate graduate students in this process. The Human Media Lab was founded in 2000 by Prof. Roel Vertegaal and employs an average of 12 graduate students.

<span class="mw-page-title-main">Projector camera systems</span>

Projector-camera systems (pro-cam), also called camera-projector systems, augment a local surface with a projected captured image of a remote surface, creating a shared workspace for remote collaboration and communication. Projector-camera systems may also be used for artistic and entertainment purposes. A pro-cam system consists of a vertical screen for implementing interpersonal space where front-facing videos are displayed, and a horizontal projected screen on the tabletop for implementing shared workspace where downward facing videos are overlapped. An automatically pre-warped image is sent to the projector to ensure that the horizontal screen appears undistorted.

Patrick Baudisch is a computer science professor and the chair of the Human Computer Interaction Lab at Hasso Plattner Institute, Potsdam University. While his early research interests revolved around natural user interfaces and interactive devices, his research focus shifted to virtual reality and haptics in the late 2000s and to digital fabrication, such as 3D Printing and Laser cutting in the 2010s. Prior to teaching and researching at Hasso Plattner Institute, Patrick Baudisch was a research scientist at Microsoft Research and Xerox PARC. He has been a member of CHI Academy since 2013, and an ACM distinguished scientist since 2014. He holds a PhD degree in Computer Science from the Department of Computer Science of the Technische Universität Darmstadt, Germany.

Carl Gutwin is a Canadian computer scientist, professor and the director of the Human–computer interaction (HCI) Lab at the University of Saskatchewan. He is also a co-theme leader in the SurfNet research network and was a past holder of a Canada Research Chair in Next-Generation Groupware. Gutwin is known for his contributions in HCI ranging from the technical aspects of systems architectures, to the design and implementation of interaction techniques, and to social theory as applied to design. Gutwin was papers co-chair at CHI 2011 and was a conference co-chair of Computer Supported Cooperative Work (CSCW) 2010.

Joëlle Coutaz is a French computer scientist, specializing in human-computer interaction (HCI). Her career includes research in the fields of operating systems and HCI, as well as being a professor at the University of Grenoble. Coutaz is considered a pioneer in HCI in France, and in 2007, she was awarded membership to SIGCHI. She was also involved in organizing CHI conferences and was a member on the editorial board of ACM Transactions on Computer-Human Interaction.

Andrew Cockburn is currently working as a Professor in the Department of Computer Science and Software Engineering at the University of Canterbury in Christchurch, New Zealand. He is in charge of the Human Computer Interactions Lab where he conducts research focused on designing and testing user interfaces that integrate with inherent human factors.

Saul Greenberg is a computer scientist, a Faculty Professor and Professor Emeritus at the University of Calgary. He was awarded ACM Fellowship in 2012 for contributions to computer supported cooperative work and ubiquitous computing.

References

  1. Sandhana, L., "Interactive display system knows users by touch", New Scientist, 25 May 2006
  2. 1 2 Dietz, P.; Leigh, D. (2001). "DiamondTouch: A Multi-User Touch Technology". Proceedings of the 14th annual ACM symposium on User interface software and technology. UIST: Orlando, FL. Vol. f. pp. 219–226.
  3. Circle Twelve press release BusinessWire, 12 June 2008
  4. Sharma, R., "Multi touch computing change the next generation of computer" Archived 2009-12-08 at the Wayback Machine gyandotcom worldpress, 13 July 2008
  5. Simon, S., "Plato's Cave", KIAH-TV 39 Interactive, 16 September 2009
  6. Jay, E. F., "Touch-Table Collaboration" Archived 2011-07-11 at the Wayback Machine , Geospatial Intelligence Forum, 2007 Volume 5 Issue 4.
  7. Kageyama, Y., Touch of the Future, Associated Press, 5 June 2006
  8. Stewart, J.; Bederson, B.; Druin, A. (1999). "Single display groupware: A model for co-present collaboration" (PDF). Proceedings of the SIGCHI conference on Human factors in computing systems. CHI: Pittsburgh, PA. pp. 286–293. doi:10.1145/302979.303064. hdl: 1903/1047 .
  9. 1 2 DiamondTouch Product Flier.
  10. Hog, H., "GDC 09: Diamond Touch: A multi-user touch tabletop", Destructoid, 27 March 2009.
  11. 1 2 Kalinski, A., Touched by a Multi-Touch World Archived 2011-07-27 at the Wayback Machine , GeoSpatial Solutions, 10 March 2009.
  12. Sandhana, L., Interactive display system knows users by touch, New Scientist, 25 May 2006
  13. Anthes, G., Give your computer the finger: Touch-screen tech comes of age, ComputerWorld, 1 February 2008
  14. Circle Twelve press release, BusinessWire, 2 September 2008.
  15. Shen, C.; Lesh, N.; Moghaddam, B.; Beardsley, P.; Bardsley, R. (2001). "Personal digital historian: user interface design". CHI '01 extended abstracts on Human factors in computing systems. CHI: Seattle, WA. CiteSeerX   10.1.1.10.5992 .
  16. Shen, C.; Everitt, K.; Ryall, K. (2003). "UbiTable: Impromptu Face-to-Face Collaboration on Horizontal Interactive Surfaces" (PDF). Fifth International Conference on Ubiquitous Computing. UbiComp: Seattle, WA.
  17. "DiamondTouch Technology". Archived from the original on 2008-10-11. Retrieved 2009-11-17.
  18. Sanders, T., "Touch-screen gamers ex-static at NextFest", vnunet.com, 17 May 2004
  19. Kirsner, S., "What a start-up brings to table", Boston Globe, 13 April 2008.
  20. Circle Twelve press release, BusinessWire, 7 May 2009.
  21. Battocchi, A.; Esposito, G., Ben-Sasson, Gal, E., Pianesi, F., Venuti, P., Weiss, P. L. (2009). "The Collaborative Puzzle Game: An Interactive Activity for Fostering Collaboration in Children with Autism Spectrum Disorder" (PDF). 8th Annual International Meeting for Autism Research. IMFAR: Chicago, IL. pp. 147–156.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  22. Stock, O.; Zancanaro, M.; Rocchi, C.; Tomasini, D.; Koren, C.; Eisikovits, Z.; Goren-Bar, D.; Weiss, P. L. (2008). "A Co-Located Interface for Narration to Support Reconciliation in a Conflict: Initial Results from Jewish and Palestinian Youth" (PDF). Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems. CHI: Florence, Italy. pp. 1583–1592.[ permanent dead link ]
  23. Shared Speech Interface Archived 2010-04-04 at the Wayback Machine , Anne Marie Piper, UCSD.
  24. Piper, A. M.; Hollan, J. D. (2008). "Supporting Medical Conversations between Deaf and Hearing Individuals with Tabletop Diaplays" (PDF). Proceedings of the ACM 2008 conference on Computer supported cooperative work. CSCW: San Diego, CA. pp. 147–156. Archived from the original (PDF) on 2010-04-14. Retrieved 2009-11-17.
  25. Wigdor, D.; Shen, C.; Forlines, C.; Balakrishnan, R. (2006). Table-Centric Interactive Spaces for Real-Time Collaboration: Solutions, Evaluation, and Application Scenarios (PDF). CollabTech: Tsukuba, Japan. Archived from the original (PDF) on 2012-03-01. Retrieved 2009-11-17.
  26. Rogers, Y., Lindley, S., (2004) Collaborating around vertical and horizontal large interactive displays: which way is best?, Interacting with Computers, Vol 16, Issue 6, pp. 113-1152.
  27. Shen, C.; Vernier, F.; Forlines, C.; Ringel, M. (2004). "DiamondSpin: an extensible toolkit for around-the-table interaction" (PDF). Proceedings of the SIGCHI conference on Human factors in computing systems. CHI: Vienna, Austria. pp. 167–174.
  28. Hutterer, P.; Thomas, B. (2008). "Enabling co-located ad-hoc collaboration on shared displays" (PDF). Proceedings of the ninth conference on Australasian user interface. AUIC: Wollongong, Australia. pp. 43–50.
  29. Diaz, J., Linux MPX Multi-touch Table May Become Alternative Microsoft Surface, Gizmodo, 16 July 2007
  30. Tse, E.; Greenburg, S.; Shen, C.; Forlines, C. (2006). "Multimodal multiplayer tabletop gaming" (PDF). Third International Workshop on Pervasive Gaming Applications. PerGames: Dublin, Ireland. Archived from the original (PDF) on 2011-07-22. Retrieved 2009-11-17.
  31. Block, G., "Mitsubishi R&D's WarCraft III Panel", IGN, 24 March 2006.
  32. RingelMorris, M.; Ryall, K.; Shen, C.; Forlines, C.; Vernier, F. (2004). "Beyond Social Protocols: Multi-User Coordination Policies for Co-located Groupware" (PDF). Proceedings of the 2004 ACM conference on Computer supported cooperative work. CSCW, Chicago, IL. pp. 262–265.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  33. Wu, M.; Shen, C.; Ryall, K.; Forlines, C.; Balakrishnan, R. (2006). "Gesture Registration, Relaxation, and Reuse for Multi-Point Direct-Touch Surfaces" (PDF). Proceedings of the First IEEE International Workshop on Horizontal Interactive Human-Computer Systems. Tabletop, Adelaide, South Australia. pp. 185–192. Archived from the original (PDF) on 2009-11-04. Retrieved 2009-11-17.
  34. Multi-touch multi-user 3d Lego model builder, 2009, archived from the original on 2021-12-20