Drag curve

Last updated

The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.

Contents

Drag curves are closely related to other curves which do not show drag, such as the power required/speed curve, or the sink rate/speed curve.

The drag curve

Drag and lift coefficients for the NACA 633618 airfoil. Full curves are lift, dashed drag; red curves have Re = 3*10 , blue 9*10 . CL, CD NACA632618.png
Drag and lift coefficients for the NACA 633618 airfoil. Full curves are lift, dashed drag; red curves have Re = 3·10 , blue 9·10 .
Coefficients of lift and drag against angle of attack. Lift drag graph.JPG
Coefficients of lift and drag against angle of attack.
Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curves for aircraft in flight.svg
Curve showing induced drag, parasitic drag and total drag as a function of airspeed.
Drag curve for the NACA 633618 airfoil, colour-coded as opposite plot. DragPolarNACA633618.png
Drag curve for the NACA 633618 airfoil, colour-coded as opposite plot.

The significant aerodynamic properties of aircraft wings are summarised by two dimensionless quantities, the lift and drag coefficients CL and CD. Like other such aerodynamic quantities, they are functions only of the angle of attack α, the Reynolds number Re and the Mach number M. CL and CD can be plotted against α, or can be plotted against each other. [2] [3]

The lift and the drag forces, L and D, are scaled by the same factor to get CL and CD, so L/D = CL/CD. L and D are at right angles, with D parallel to the free stream velocity (the relative velocity of the surrounding distant air), so the resultant force R lies at the same angle to D as the line from the origin of the graph to the corresponding CL, CD point does to the CD axis.

If an aerodynamic surface is held at a fixed angle of attack in a wind tunnel, and the magnitude and direction of the resulting force are measured, they can be plotted using polar coordinates. When this measurement is repeated at different angles of attack the drag curve is obtained. Lift and drag data was gathered in this way in the 1880s by Otto Lilienthal and around 1910 by Gustav Eiffel, though not presented in terms of the more recent coefficients. Eiffel was the first to use the name "drag polar", [4] however drag curves are rarely plotted today using polar coordinates.

Depending on the aircraft type, it may be necessary to plot drag curves at different Reynolds and Mach numbers. The design of a fighter will require drag curves for different Mach numbers, whereas gliders, which spend their time either flying slowly in thermals or rapidly between them, may require curves at different Reynolds numbers but are unaffected by compressibility effects. During the evolution of the design the drag curve will be refined. A particular aircraft may have different curves even at the same Re and M values, depending for example on whether undercarriage and flaps are deployed. [2]

Drag curve for light aircraft. CD0= 0.017, K = 0.075 and CL0 = 0.1. The tangent gives the maximum L/D point. DargPolarAL.png
Drag curve for light aircraft. CD0= 0.017, K = 0.075 and CL0 = 0.1. The tangent gives the maximum L/D point.

The accompanying diagram shows CL against CD for a typical light aircraft. The minimum CD point is at the left-most point on the plot. One component of drag is induced drag (an inevitable side-effect of producing lift, which can be reduced by increasing the indicated airspeed). This is proportional to CL2. The other drag mechanisms, parasitic and wave drag, have both constant components, totalling CD0, and lift-dependent contributions that increase in proportion to CL2. In total, then

CD = CD0 + K.(CL - CL0)2.

The effect of CL0 is to shift the curve up the graph; physically this is caused by some vertical asymmetry, such as a cambered wing or a finite angle of incidence, which ensures the minimum drag attitude produces lift and increases the maximum lift-to-drag ratio. [2] [5]

Power required curves

One example of the way the curve is used in the design process is the calculation of the power required (PR) curve, which plots the power needed for steady, level flight over the operating speed range. The forces involved are obtained from the coefficients by multiplication with (ρ/2).S V2, where ρ is the density of the atmosphere at the flight altitude, S is the wing area and V is the speed. In level flight, lift equals weight W and thrust equals drag, so

PR curve for the light aircraft with the drag curve above and weighing 2000 kg, with a wing area of 15 m2 and a propeller efficiency of 0.8. PRplot.png
PR curve for the light aircraft with the drag curve above and weighing 2000 kg, with a wing area of 15 m² and a propeller efficiency of 0.8.
W = (ρ/2).S.V2.CL and
PR = (ρ/2η).S.V3.CD.

The extra factor of V/η, with η the propeller efficiency, in the second equation enters because PR= (required thrust)×V/η. Power rather than thrust is appropriate for a propeller driven aircraft, since it is roughly independent of speed; jet engines produce constant thrust. Since the weight is constant, the first of these equations determines how CL falls with increasing speed. Putting these CL values into the second equation with CD from the drag curve produces the power curve. The low speed region shows a fall in lift induced drag, through a minimum followed by an increase in profile drag at higher speeds. The minimum power required, at a speed of 195 km/h  (121 mph) is about 86 kW (115 hp); 135 kW (181 hp) is required for a maximum speed of 300 km/h (186 mph). Flight at the power minimum will provide maximum endurance; the speed for greatest range is where the tangent to the power curve passes through the origin, about 240 km/h (150 mph). [6] )

If an analytical expression for the curve is available, useful relationships can be developed by differentiation. For example the form above, simplified slightly by putting CL0 = 0, has a maximum CL/CD at CL2 = CD0/K. For a propeller aircraft this is the maximum endurance condition and gives a speed of 185 km/h (115 mph). The corresponding maximum range condition is the maximum of CL3/2/CD, at CL2 = 3.CD0/K, and so the optimum speed is 244 km/h (152 mph). The effects of the approximation CL0 = 0 are less than 5%; of course, with a finite CL0 = 0.1, the analytic and graphical methods give the same results. [6]

The low speed region of flight is known as the "back of the power curve" [7] [8] (sometimes "back of the drag curve") where more power is required in order to fly slower. It is an inefficient region of flight because speed can be increased and power decreased; there is no trade-off between increased speed and increased power consumption. It is regarded as a "speed unstable" region of flight, because a decrease in speed will lead to a further decrease in speed if power if not adjusted, unlike in normal circumstances. [8] [9]

Rate of climb

For an aircraft to climb at an angle θ and at speed V its engine must be developing more power P in excess of power required PR to balance the drag experienced at that speed in level flight and shown on the power required plot. In level flight PR/V = D but in the climb there is the additional weight component to include, that is

P/V = D + W.sin θ = PR/V + W.sin θ.

Hence the climb rate RC = V.sin θ = (P - PR)/W. [10] Supposing the 135 kW engine required for a maximum speed at 300 km/h is fitted, the maximum excess power is 135 - 87 = 48 Kw at the minimum of PR and the rate of climb 2.4 m/s.

Fuel efficiency

For propeller aircraft (including turboprops), maximum range and therefore maximum fuel efficiency is achieved by flying at the speed for maximum lift-to-drag ratio. This is the speed which covers the greatest distance for a given amount of fuel. Maximum endurance (time in the air) is achieved at a lower speed, when drag is minimised.

For jet aircraft, maximum endurance occurs when the lift-to-drag ratio is maximised. Maximum range occurs at a higher speed. This is because jet engines are thrust-producing, not power-producing. Turboprop aircraft do produce some thrust through the turbine exhaust gases, however most of their output is as power through the propeller.

"Long-range cruise" speed (LRC) is typically chosen to give 1% less fuel efficiency than maximum range speed, because this results in a 3-5% increase in speed. However, fuel is not the only marginal cost in airline operations, so the speed for most economical operation (ECON) is chosen based on the cost index (CI), which is the ratio of time cost to fuel cost. [11]

Gliders

The same aircraft, without power. The tangent defines the minimum glide angle, for maximum range. The peak of the curve indicates the minimum sink rate, for maximum endurance (time in the air). GliderPolar.png
The same aircraft, without power. The tangent defines the minimum glide angle, for maximum range. The peak of the curve indicates the minimum sink rate, for maximum endurance (time in the air).

Without power, a gliding aircraft has only gravity to propel it. At a glide angle of θ, the weight has two components, W.cos θ at right angles to the flight line and W.sin θ parallel to it. These are balanced by the force and lift components respectively, so

W.cos θ = (ρ/2).S.V2.CL and
W. sin θ = (ρ/2).S.V2.CD.

Dividing one equation by the other shows that the glide angle is given by tan θ = CD/CL. The performance characteristics of most interest in unpowered flight are the speed across the ground, Vg say, and the sink speed Vs; these are displayed by plotting V.sin θ = Vs against V.cos θ = Vg. Such plots are generally termed polars, and to produce them the glide angle as a function of V is required. [12]

One way of finding solutions to the two force equations is to square them both then add together; this shows the possible CL, CD values lie on a circle of radius 2.W / S.ρ.V2. When this is plotted on the drag polar, the intersection of the two curves locates the solution and its θ value read off. Alternatively, bearing in mind that glides are usually shallow, the approximation cos θ ≃ 1, good for θ less than 10°, can be used in the lift equation and the value of CL for a chosen V calculated, finding CL from the drag polar and then calculating θ. [12]

The example polar here shows the gliding performance of the aircraft analysed above, assuming its drag polar is not much altered by the stationary propeller. A straight line from the origin to some point on the curve has a gradient equal to the glide angle at that speed, so the corresponding tangent shows the best glide angle tan−1(CD/CL)min ≃ 3.3°. This is not the lowest rate of sink but provides the greatest range, requiring a speed of 240 km/h (149 mph); the minimum sink rate of about 3.5 m/s is at 180 km/h (112 mph), speeds seen in the previous, powered plots. [12]

Sink rate

As airspeed increases, total drag decreases then increases. Drag curves for aircraft in flight.svg
As airspeed increases, total drag decreases then increases.
Polar curve for a glider, showing glide angle for minimum sink rate. The origin of the graph is where the airspeed axis crosses the sink rate axis at zero airspeed and zero sink rate. The horizontal line is tangent to the top of the polar curve. That tangent point indicates the minimum sink airspeed (vertical line). The sink rate increases to the left or right of this point, corresponding to a lower or higher airspeed. This minimum sink airspeed has the lowest possible rate of sink, and allows the longest possible glide time before landing. Polar curve 1.jpg
Polar curve for a glider, showing glide angle for minimum sink rate. The origin of the graph is where the airspeed axis crosses the sink rate axis at zero airspeed and zero sink rate. The horizontal line is tangent to the top of the polar curve. That tangent point indicates the minimum sink airspeed (vertical line). The sink rate increases to the left or right of this point, corresponding to a lower or higher airspeed. This minimum sink airspeed has the lowest possible rate of sink, and allows the longest possible glide time before landing.
Polar curve for a glider, showing glide angle for the best glide speed (best L/D). It is the flattest possible glide angle through calm air, which will maximize the distance flown. This airspeed (vertical line) corresponds to the tangent point of a line starting from the origin of the graph. A glider flying faster or slower than this airspeed will cover less distance before landing. Polar Curve 2.jpg
Polar curve for a glider, showing glide angle for the best glide speed (best L/D). It is the flattest possible glide angle through calm air, which will maximize the distance flown. This airspeed (vertical line) corresponds to the tangent point of a line starting from the origin of the graph. A glider flying faster or slower than this airspeed will cover less distance before landing.

A graph showing the sink rate of an aircraft (typically a glider) against its airspeed is known as a polar curve. [14] Polar curves are used to compute the glider's minimum sink speed, best lift over drag (L/D), and speed to fly. [13]

The polar curve of a glider is derived from theoretical calculations, or by measuring the rate of sink at various airspeeds. These data points are then connected by a line to form the curve. Each type of glider has a unique polar curve, and individual gliders vary somewhat depending on the smoothness of the wing, control surface drag, or the presence of bugs, dirt, and rain on the wing. Different glider configurations will have different polar curves, for example, solo versus dual flight, with and without water ballast, different flap settings, or with and without wing-tip extensions. [14]

Knowing the best speed to fly is important in exploiting the performance of a glider. Two of the key measures of a glider’s performance are its minimum sink rate and its best glide ratio, also known as the best "glide angle". These occur at different speeds. Knowing these speeds is important for efficient cross-country flying. In still air the polar curve shows that flying at the minimum sink speed enables the pilot to stay airborne for as long as possible and to climb as quickly as possible, but at this speed the glider will not travel as far as if it flew at the speed for the best glide.

Effect of wind, lift/sink and weight on best glide speed

The best speed to fly in a head wind is determined from the graph by shifting the origin to the right along the horizontal axis by the speed of the headwind, and drawing a new tangent line. This new airspeed will be faster as the headwind increases, but will result in the greatest distance covered. A general rule of thumb is to add half the headwind component to the best L/D for the maximum distance. For a tailwind, the origin is shifted to the left by the speed of the tailwind, and drawing a new tangent line. The tailwind speed to fly will lie between minimum sink and best L/D. [14]

In subsiding air, the polar curve is shifted lower according the airmass sink rate, and a new tangent line drawn. This will show the need to fly faster in subsiding air, which gives the subsiding air less time to lower the glider's altitude. Correspondingly, the polar curve is displaced upwards according to the lift rate, and a new tangent line drawn. [13]

Increased weight does not affect the maximum range of a gliding aircraft. Glide angle is only determined by the lift/drag ratio. Increased weight will require an increased airspeed to maintain the optimum glide angle, so a heavier gliding aircraft will have reduced endurance, because it is descending along the optimum glide path at a faster rate. [15]

For racing, glider pilots will often use water ballast to increase the weight of their glider. This increases the optimum speed, at a cost of low speed performance and a reduced climb rate in thermals. [16] Ballast can also be used to adjust the centre of gravity of the glider, which can improve performance.

See also

Related Research Articles

<span class="mw-page-title-main">Stall (fluid dynamics)</span> Abrupt reduction in lift due to flow separation

In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack increases. This occurs when the critical angle of attack of the foil is exceeded. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil, and Reynolds number.

<span class="mw-page-title-main">Flight</span> Process by which an object moves, through an atmosphere or beyond it

Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere or through the vacuum of outer space. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

<span class="mw-page-title-main">Variometer</span> Flight instrument which determines the aircrafts vertical velocity (rate of descent/climb)

In aviation, a variometer – also known as a rate of climb and descent indicator (RCDI), rate-of-climb indicator, vertical speed indicator (VSI), or vertical velocity indicator (VVI) – is one of the flight instruments in an aircraft used to inform the pilot of the rate of descent or climb. It can be calibrated in metres per second, feet per minute or knots, depending on country and type of aircraft. It is typically connected to the aircraft's external static pressure source.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Angle of attack</span> Angle between the chord of a wing and the undisturbed airflow

In fluid dynamics, angle of attack is the angle between a reference line on a body and the vector representing the relative motion between the body and the fluid through which it is moving. Angle of attack is the angle between the body's reference line and the oncoming flow. This article focuses on the most common application, the angle of attack of a wing or airfoil moving through air.

<span class="mw-page-title-main">Lift-to-drag ratio</span> Measure of aerodynamic efficiency

In aerodynamics, the lift-to-drag ratio is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

In aerodynamics, lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air to cause a downforce. It is symbolized as , and the lift-induced drag coefficient as .

<span class="mw-page-title-main">Wing loading</span> Total mass divided by area of wing

In aerodynamics, wing loading is the total mass of an aircraft or flying animal divided by the area of its wing. The stalling speed of an aircraft is partly determined by its wing loading.

<span class="mw-page-title-main">Speed to fly</span>

Speed to fly is a principle used by soaring pilots when flying between sources of lift, usually thermals, ridge lift and wave. The aim is to maximize the average cross-country speed by optimizing the airspeed in both rising and sinking air. The optimal airspeed is independent of the wind speed, because the fastest average speed achievable through the airmass corresponds to the fastest achievable average groundspeed.

<span class="mw-page-title-main">Flap (aeronautics)</span> Anti-stalling high-lift device on aircraft

A flap is a high-lift device used to reduce the stalling speed of an aircraft wing at a given weight. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used to reduce the take-off distance and the landing distance. Flaps also cause an increase in drag so they are retracted when not needed.

Taras Kiceniuk Jr. is a hang glider pioneer from southern California.

<span class="mw-page-title-main">Rate of climb</span> Aircraft vertical velocity during flight

In aeronautics, the rate of climb (RoC) is an aircraft's vertical speed, that is the positive or negative rate of altitude change with respect to time. In most ICAO member countries, even in otherwise metric countries, this is usually expressed in feet per minute (ft/min); elsewhere, it is commonly expressed in metres per second (m/s). The RoC in an aircraft is indicated with a vertical speed indicator (VSI) or instantaneous vertical speed indicator (IVSI).

In fluid dynamics, drag is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers or between a fluid and a solid surface.

<span class="mw-page-title-main">Flight envelope</span> Aerodynamic performance of an air or spacecraft

In aerodynamics, the flight envelope, service envelope, or performance envelope of an aircraft or spacecraft refers to the capabilities of a design in terms of airspeed and load factor or atmospheric density, often simplified to altitude. The term is somewhat loosely applied, and can also refer to other measurements such as maneuverability. When a plane is pushed, for instance by diving it at high speeds, it is said to be flown "outside the envelope", something considered rather dangerous.

A banked turn is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal.

<span class="mw-page-title-main">Autorotation</span> Rotation of helicopter rotors by action of wind resistance rather that engine power

Autorotation is a state of flight in which the main rotor system of a helicopter or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. The term autorotation dates to a period of early helicopter development between 1915 and 1920, and refers to the rotors turning without the engine. It is analogous to the gliding flight of a fixed-wing aircraft. Some trees have seeds that have evolved wing-like structures that enable the seed to spin to the ground in autorotation, which helps the seeds to disseminate over a wider area.

<span class="mw-page-title-main">Coffin corner (aerodynamics)</span> Dangerous condition in aviation

Coffin corner is the region of flight where a fast but subsonic fixed-wing aircraft's stall speed is near the critical Mach number, at a given gross weight and G-force loading. In this region of flight, it is very difficult to keep an airplane in stable flight. Because the stall speed is the minimum speed required to maintain level flight, any reduction in speed will cause the airplane to stall and lose altitude. Because the critical Mach number is the maximum speed at which air can travel over the wings without losing lift due to flow separation and shock waves, any increase in speed will cause the airplane to lose lift, or to pitch heavily nose-down, and lose altitude.

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute.

<span class="mw-page-title-main">Glider (sailplane)</span> Type of aircraft used in the sport of gliding

A glider or sailplane is a type of glider aircraft used in the leisure activity and sport of gliding. This unpowered aircraft can use naturally occurring currents of rising air in the atmosphere to gain altitude. Sailplanes are aerodynamically streamlined and so can fly a significant distance forward for a small decrease in altitude.

<span class="mw-page-title-main">Forces on sails</span>

Forces on sails result from movement of air that interacts with sails and gives them motive power for sailing craft, including sailing ships, sailboats, windsurfers, ice boats, and sail-powered land vehicles. Similar principles in a rotating frame of reference apply to windmill sails and wind turbine blades, which are also wind-driven. They are differentiated from forces on wings, and propeller blades, the actions of which are not adjusted to the wind. Kites also power certain sailing craft, but do not employ a mast to support the airfoil and are beyond the scope of this article.

References

  1. Shames, Irving H. (1962). Mechanics of Fluids. McGraw-Hill. p. 364. LCCN   61-18731 . Retrieved 8 November 2012. Another useful curve that is commonly used in reporting wind-tunnel data is the CL vs CD curve, which is sometimes called the polar plot.
  2. 1 2 3 Anderson, John D. Jnr. (1999). Aircraft Performance and Design. Cambridge: WCB/McGraw-Hill. ISBN   0-07-116010-8.
  3. Abbott, Ira H.; von Doenhoff, Albert E. (1958). Theory of wing sections. New York: Dover Publications. pp. 57–70, 129–142. ISBN   0-486-60586-8.
  4. Aircraft Performance and Design. p. 139.
  5. Aircraft Performance and Design. pp. 414–5.
  6. 1 2 Aircraft Performance and Design. pp. 199–252, 293–309.
  7. "Proficiency: Behind the power curve". 11 May 2013.
  8. 1 2 "Behind the Curve". 4 November 2002.
  9. "Mentor Matters: The dark side of the back side". aopa.org. 8 September 2014. Retrieved 28 June 2022.
  10. Aircraft Performance and Design. pp. 265–270.
  11. "AERO – Fuel Conservation Strategies: Cruise Flight". boeing.com. Boeing. Retrieved 28 January 2022.
  12. 1 2 3 Aircraft Performance and Design. pp. 282–7.
  13. 1 2 3 4 Wander, Bob (2003). Glider Polars and Speed-To-Fly...Made Easy!. Minneapolis: Bob Wander's Soaring Books & Supplies. p. 7-10.
  14. 1 2 3 4 5 Glider Flying Handbook, FAA-H-8083-13A. U.S. Department of Transportation, FAA. 2013. p. Chapter 5, Pg 8. ISBN   9781619541047.
  15. "Glide Performance – SKYbrary Aviation Safety". 25 May 2021.
  16. Bourgeois, Roy (25 May 2023). "Soaring with Water Ballast". wingsandwheels.com. Retrieved 7 November 2023.