Dual-axis optical coherence tomography

Last updated

Dual-axis optical coherence tomography (DA-OCT) is an imaging modality that is based on the principles of optical coherence tomography (OCT). These techniques are largely used for medical imaging. OCT is non-invasive and non-contact. It allows for real-time, in situ imaging and provides high image resolution. OCT is analogous to ultrasound but relies on light waves (typically near-infrared), which makes it faster than ultrasound. [1] In general, OCT has proven to be compact and portable. It is compatible with arterial catheters and endoscopes, which helps diagnose diseases within long internal cavities, including the esophagus (Barrett's disease) and coronary arteries (cardiovascular disease). [2]

Contents

The biggest limitation with traditional OCT is that it relies on detecting ballistic (non-scattered) photons, which can have a mean free path of only 100 microns, or singly backscattered photons. This strongly restricts depth penetration in highly-scattering biological tissue. It causes unsatisfactory signal-to-noise ratio (SNR) at deep regions. To overcome this issue, DA-OCT uses angled source and detection components and a tunable lens to create an enhanced depth of focus and improve depth penetration in biological tissue. [3] [4]

Design

Dual-axis architecture

DA-OCT applies a dual-axis architecture to a spectral-domain OCT system. The objective is to improve the depth of view within biological tissue. Dual-axis architecture with coherence imaging was introduced in the early 2010s. Prior to the development of DA-OCT, the dual-axis design was commonly used with multiple-scattering multispectral low coherence interferometry (ms2/LCI), a technique that also analyzes multiply scattered light to take depth-resolved images from optical scattering media. [5]

For this architecture, the light source and detector are tilted at equal and opposite angles to create a dual-axis. The slight scattering angle increases the chance of collecting more photons being scattered within the tissue. The greater the angle of the source and the detector, the deeper the focal zone. But there is also a problem: the greater the angle, the smaller the focal zone. Even though the chance of detecting a diffused photon increases, the size of the region has decreased. [3]

Tunable lens

To fix the decreasing focal zone size problem, a tunable lens is used. The tunable lens allows dynamic focusing, where the focal zone can be scanned at various tissue depths. The data from different scans are stitched into a single image using an algorithm similar to one used in Gabor-domain optical coherence microscopy. This forms an enhanced depth of focus, allowing for greater penetration depth within turbid media. [3]

Instrument setup

Light from a broadband supercontinuum laser is filtered to a range of 1240 to 1390 nm and directed into a fiber coupler. The fiber coupler implements an interferometer, the hallmark of OCT, which splits the input light into sample and reference arms. The dual-axis architecture was added to the sample arm, angling the both light coming from the laser source and the light directed at the detector. By changing the angle, it increases the chance of gathering more light scattered at random angles deep in the media. DA-OCT also uses a micro-electromechanical system (MEMS) mirror for faster beam scanning. This helps decrease the integration time since DA-OCT has to gather scans at multiple depths to form a single image. [3]

Experimental applications

For both DA-OCT and OCT, the research group imaged the samples with the tunable lens and without the tunable lens. In their results, they referred to DA-OCT with the tunable lens as DA-DOF+ and DA-OCT without the tunable lens as just DA-OCT. (DOF+ indicates "enhanced depth of focus".) The group referred to on-axis OCT with the tunable lens as On-Axis OCT DOF+. They referred to on-axis OCT without the tunable lens as OCT or On-Axis OCT. [3]

For quantitative experiments, contrast-to-noise ratio (CNR) was used as the main metric to determine image quality. They typically imaged a needle inside the scattering media, so CNR was expressed by:

where μs is the mean pixel count of the needle profile, μm is the mean pixel count of the surrounding media, σs and σm are the corresponding standard deviations. [3]

Imaging of scattering media

Wax's research group developed Intralipid-based hydrogel phantoms, which were imaged with DA-OCT, On-Axis OCT, and DA-DOF+. To mimic highly forward scattering biological tissue, one hydrogel phantom had a reduced scattering coefficient of 1.6 mm-1 and an anisotropy of 0.9. The other hydrogel phantom had a near-zero anisotropy value to act as the control. A needle was placed in both hydrogel phantoms to be imaged. In the high anisotropy case, there was no improvement in the CNR of DA-OCT compared to On-Axis OCT. Comparing DA-DOF+ to On-Axis OCT, there was a 17% increase in CNR. In the low anisotropy case, there was no significant increase in CNR of DA-OCT over On-Axis OCT, but there was a 31% increase for DA-DOF+ over On-Axis OCT. [3]

In-vivo imaging

Wax's research group also observed a needle's CNR profile at different depths (~0 mm, 1.3 mm,  2.5 mm) within mouse skin. They imaged with On-Axis OCT, DA-OCT, On-Axis OCT DOF+, and DA-DOF+. For larger depths (>1 mm), DA-OCT and DA-DOF+ produced a better CNR than On-Axis OCT and On-Axis OCT DOF+. For example, the group found a 195% increase with DA-OCT versus On-Axis OCT, and a 169% increase with DA-DOF+ versus On-Axis OCT DOF+. The DA-OCT and DA-DOF+ did not show strong CNR at shallower depths compared to On-Axis OCT and On-Axis OCT DOF+ because the needle surface was located too far from the system's focal zone. In all cases, the modes with enhanced depth of focus (DOF+) had a significantly better CNR than the corresponding modes without the tunable lens. Overall, the trends match the group's conclusions: DA-OCT DOF+ provides the best CNR at greater depths. [3]

Ex-vivo imaging

The research group led by Wax conducted a couple of qualitative studies. Firstly, they examined ex-vivo porcine ear skin using DA-OCT and traditional OCT. The epidermis appears brighter in the DA-OCT image, whereas it blends into the dermis layer in the traditional OCT image. DA-OCT detected a stronger signal from the photons than traditional OCT detected. Also, the epidermis layer appears thicker in the DA-OCT image meaning that more multiply-scattered photons were detected with DA-OCT compared to traditional OCT. [4]

The group compared DA-OCT images of injured rat skin to histopathology slides of the same samples. According to the histopathology slides, the base of the rat skin is healthy (the control), while the middle and tip indicate injury and structural damage. The DA-OCT images match these conclusions. For the healthy base, the DA-OCT image shows homogeneous backscattering intensity. For the middle and tip, the DA-OCT images show regions of inhomogeneous backscattering, which are indicative of tissue necrosis. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Michelson interferometer</span> Common configuration for optical interferometry

The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test.

<span class="mw-page-title-main">Optical coherence tomography</span> Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses interferometry with short-coherence-length light to obtain micrometer-level depth resolution and uses transverse scanning of the light beam to form two- and three-dimensional images from light reflected from within biological tissue or other scattering media. Short-coherence-length light can be obtained using a superluminescent diode (SLD) with a broad spectral bandwidth or a broadly tunable laser with narrow linewidth. The first demonstration of OCT imaging was published by a team from MIT and Harvard Medical School in a 1991 article in the journal Science. The article introduced the term “OCT” to credit its derivation from optical coherence-domain reflectometry, in which the axial resolution is based on temporal coherence. The first demonstrations of in vivo OCT imaging quickly followed.

Medical optical imaging is the use of light as an investigational imaging technique for medical applications, pioneered by American Physical Chemist Britton Chance. Examples include optical microscopy, spectroscopy, endoscopy, scanning laser ophthalmoscopy, laser Doppler imaging, and optical coherence tomography. Because light is an electromagnetic wave, similar phenomena occur in X-rays, microwaves, and radio waves.

<span class="mw-page-title-main">Optical tomography</span>

Optical tomography is a form of computed tomography that creates a digital volumetric model of an object by reconstructing images made from light transmitted and scattered through an object. Optical tomography is used mostly in medical imaging research. Optical tomography in industry is used as a sensor of thickness and internal structure of semiconductors.

Ballistic light, also known as ballistic photons, is photons of light that have traveled through a scattering (turbid) medium in a straight line.

<span class="mw-page-title-main">Monte Carlo method for photon transport</span>

Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs. This is equivalent to modeling photon transport analytically by the radiative transfer equation (RTE), which describes the motion of photons using a differential equation. However, closed-form solutions of the RTE are often not possible; for some geometries, the diffusion approximation can be used to simplify the RTE, although this, in turn, introduces many inaccuracies, especially near sources and boundaries. In contrast, Monte Carlo simulations can be made arbitrarily accurate by increasing the number of photons traced. For example, see the movie, where a Monte Carlo simulation of a pencil beam incident on a semi-infinite medium models both the initial ballistic photon flow and the later diffuse propagation.

The photoacoustic Doppler effect is a type of Doppler effect that occurs when an intensity modulated light wave induces a photoacoustic wave on moving particles with a specific frequency. The observed frequency shift is a good indicator of the velocity of the illuminated moving particles. A potential biomedical application is measuring blood flow.

Angle-resolved low-coherence interferometry (a/LCI) is an emerging biomedical imaging technology which uses the properties of scattered light to measure the average size of cell structures, including cell nuclei. The technology shows promise as a clinical tool for in situ detection of dysplastic, or precancerous tissue.

<span class="mw-page-title-main">Optical sectioning</span> Imaging of focal planes within a thick sample

Optical sectioning is the process by which a suitably designed microscope can produce clear images of focal planes deep within a thick sample. This is used to reduce the need for thin sectioning using instruments such as the microtome. Many different techniques for optical sectioning are used and several microscopy techniques are specifically designed to improve the quality of optical sectioning.

Ultrasound-modulated optical tomography (UOT), also known as Acousto-Optic Tomography (AOT), is a hybrid imaging modality that combines light and sound; it is a form of tomography involving ultrasound. It is used in imaging of biological soft tissues and has potential applications for early cancer detection. As a hybrid modality which uses both light and sound, UOT provides some of the best features of both: the use of light provides strong contrast and sensitivity ; these two features are derived from the optical component of UOT. The use of ultrasound allows for high resolution, as well as a high imaging depth. However, the difficulty of tackling the two fundamental problems with UOT have caused UOT to evolve relatively slowly; most work in the field is limited to theoretical simulations or phantom / sample studies.

<span class="mw-page-title-main">OCT Biomicroscopy</span> Use of optical coherence tomography to examine the transparent axial tissues of the eye

OCT Biomicroscopy is the use of optical coherence tomography (OCT) in place of slit lamp biomicroscopy to examine the transparent axial tissues of the eye. Traditionally, ophthalmic biomicroscopy has been completed with a slit lamp biomicroscope that uses slit beam illumination and an optical microscope to enable stereoscopic, magnified, cross-sectional views of transparent tissues in the eye, with or without the aid of an additional lens. Like slit lamp biomicroscopy, OCT does not penetrate opaque tissues well but enables detailed, cross-sectional views of transparent tissues, often with greater detail than is possible with a slit lamp. Ultrasound biomicroscopy (UBM) is much better at imaging through opaque tissues since it uses high energy sound waves. Because of its limited depth of penetration, UBM's main use within ophthalmology has been to visualize anterior structures such as the angle and ciliary body. Both ultrasound and OCT biomicroscopy produce an objective image of ocular tissues from which measurements can be made. Unlike UBM, OCT biomicroscopy can image tissues with high axial resolution as far posteriorly as the choroid.

<span class="mw-page-title-main">Intracoronary optical coherence tomography</span>

Intracoronary optical coherence tomography (OCT) is a catheter-based imaging application of optical coherence tomography. Currently prospective trials demonstrate OCT alters morbidity and/or mortality in coronary stenting and cervical cancer screening as discussed below.

<span class="mw-page-title-main">Photoacoustic microscopy</span>

Photoacoustic microscopy is an imaging method based on the photoacoustic effect and is a subset of photoacoustic tomography. Photoacoustic microscopy takes advantage of the local temperature rise that occurs as a result of light absorption in tissue. Using a nanosecond pulsed laser beam, tissues undergo thermoelastic expansion, resulting in the release of a wide-band acoustic wave that can be detected using a high-frequency ultrasound transducer. Since ultrasonic scattering in tissue is weaker than optical scattering, photoacoustic microscopy is capable of achieving high-resolution images at greater depths than conventional microscopy methods. Furthermore, photoacoustic microscopy is especially useful in the field of biomedical imaging due to its scalability. By adjusting the optical and acoustic foci, lateral resolution may be optimized for the desired imaging depth.

Multiple scattering low coherence interferometry (ms/LCI) is an imaging technique that relies on analyzing multiply scattered light in order to capture depth-resolved images from optical scattering media. With current applications primarily in medical imaging, has the advantage of a higher range since forward scattered light attenuates less with depth when compared to the specularly reflected light that is assessed in more conventional imaging methods such as optical coherence tomography. This allows ms/LCI to image through up to 90 mean free scattering paths, compared to roughly 27 scattering MFPs in OCT and 1–2 scattering MFPs in confocal microscopy.

Speckle variance optical coherence tomography (SV-OCT) is an imaging algorithm for functional optical imaging. Optical coherence tomography is an imaging modality that uses low-coherence interferometry to obtain high resolution, depth-resolved volumetric images. OCT can be used to capture functional images of blood flow, a technique known as optical coherence tomography angiography (OCT-A). SV-OCT is one method for OCT-A that uses the variance of consecutively acquired images to detect flow at the micron scale. SV-OCT can be used to measure the microvasculature of tissue. In particular, it is useful in ophthalmology for visualizing blood flow in retinal and choroidal regions of the eye, which can provide information on the pathophysiology of diseases.

Spectroscopic optical coherence tomography (SOCT) is an optical imaging and sensing technique, which provides localized spectroscopic information of a sample based on the principles of optical coherence tomography (OCT) and low coherence interferometry. The general principles behind SOCT arise from the large optical bandwidths involved in OCT, where information on the spectral content of backscattered light can be obtained by detection and processing of the interferometric OCT signal. SOCT signal can be used to quantify depth-resolved spectra to retrieve the concentration of tissue chromophores, characterize tissue light scattering, and/or used as a functional contrast enhancement for conventional OCT imaging.

Quantum optical coherence tomography (Q-OCT) is an imaging technique that uses nonclassical (quantum) light sources to generate high-resolution images based on the Hong-Ou-Mandel effect (HOM). Q-OCT is similar to conventional OCT but uses a fourth-order interferometer that incorporates two photodetectors rather than a second-order interferometer with a single photodetector. The primary advantage of Q-OCT over OCT is insensitivity to even-order dispersion in multi-layered and scattering media.

References

  1. Fujimoto, James G.; Pitris, Costas; Boppart, Stephen A.; Brezinski, Mark E. (2000-01-01). "Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy". Neoplasia. 2 (1): 9–25. doi:10.1038/sj.neo.7900071. ISSN   1476-5586. PMC   1531864 . PMID   10933065.
  2. Gora, Michalina J.; Suter, Melissa J.; Tearney, Guillermo J.; Li, Xingde (2017-05-01). "Endoscopic optical coherence tomography: technologies and clinical applications [Invited]". Biomedical Optics Express. 8 (5): 2405–2444. doi:10.1364/BOE.8.002405. ISSN   2156-7085. PMC   5480489 . PMID   28663882.
  3. 1 2 3 4 5 6 7 8 Jelly, Evan T.; Zhao, Yang; Chu, Kengyeh K.; Price, Hillel; Crose, Michael; Steelman, Zachary A.; Wax, Adam (2021). "Deep imaging with 1.3 µm dual-axis optical coherence tomography and an enhanced depth of focus". Biomed. Opt. Express. 12 (12): 7689–7702. doi: 10.1364/BOE.438621 . PMID   35003860. S2CID   243903588.
  4. 1 2 3 Zhao, Yang; Eldridge, Will J.; Maher, Jason R.; Kim, Sanghoon; Crose, Michael; Ibrahim, Mohamed; Levinson, Howard; Wax, Adam (2017). "Dual-axis optical coherence tomography for deep tissue imaging". Opt. Lett. 42 (12): 2302–2305. Bibcode:2017OptL...42.2302Z. doi:10.1364/OL.42.002302. PMC   5639437 . PMID   28614337.
  5. Matthews, Thomas E.; Medina, Manuel; Maher, Jason R.; Levinson, Howard; Brown, William J.; Wax, Adam (2014). "Deep tissue imaging using spectroscopic analysis of multiply scattered light". Optica. 1 (2): 105–111. Bibcode:2014Optic...1..105M. doi: 10.1364/OPTICA.1.000105 .