Dwarf spheroidal galaxy

Last updated
NGC 0147 2MASS.jpg
Fornax dwarf galaxy.jpg
NGC147 (left) and the Fornax Dwarf (right), two of the earliest known dwarf spheroidal galaxies.

A dwarf spheroidal galaxy (dSph) is a term in astronomy applied to small, low-luminosity galaxies with very little dust and an older stellar population. They are found in the Local Group as companions to the Milky Way and as systems that are companions to the Andromeda Galaxy (M31). While similar to dwarf elliptical galaxies in appearance and properties such as little to no gas or dust or recent star formation, they are approximately spheroidal in shape and generally have lower luminosity.

Contents

Discovery

Despite the radii of dSphs being much larger than those of globular clusters, they are much more difficult to find due to their low luminosities and surface brightnesses. Dwarf spheroidal galaxies have a large range of luminosities, and known dwarf spheroidal galaxies span several orders of magnitude of luminosity. [1] Their luminosities are so low that Ursa Minor, Carina, and Draco, the known dwarf spheroidal galaxies with the lowest luminosities, have mass-to-light ratios (M/L) greater than that of the Milky Way. [2] Dwarf spheroidals also have little to no gas with no obvious signs of recent star formation. [3] [4] Within the Local Group, dSphs are primarily found near the Milky Way and M31. [5] [6]

The first dwarf spheroidal galaxies discovered were Sculptor and Fornax in 1938. [2] The Sloan Digital Sky Survey has resulted in the discovery of 11 more dSph galaxies as of 2007 [7] By 2015, many more ultra-faint dSphs were discovered, all satellites of the Milky Way. [8] Nine potentially new dSphs were discovered in the Dark Energy Survey in 2015. [9] Each dSph is named after constellations they are discovered in, such as the Sagittarius dwarf spheroidal galaxy, all of which consist of stars generally much older than 1–2 Gyr that formed over the span of many gigayears. [2]

For example, 98% of the stars in the Carina dwarf spheroidal galaxy are older than 2 Gyr, formed over the course of three bursts around 3, 7 and 13 Gyr ago. [2] The stars in Carina have also been found to be metal-poor. [10] This is unlike star clusters because, while star clusters have stars which formed more or less the same time, dwarf spheroidal galaxies experience multiple bursts of star formation. [2]

Evidence of dark matter

Because of the faintness of the lowest-luminosity dwarf spheroidal galaxies and the nature of the stars contained within them, some astronomers suggest that dwarf spheroidal galaxies and globular clusters may not be clearly separate and distinct types of objects. [11] Other recent studies, however, have found a distinction in that the total amount of mass inferred from the motions of stars in dwarf spheroidals is many times that which can be accounted for by the mass of the stars themselves. Studies reveal that dwarf spheroidal galaxies have a dynamical mass of around 107 M, which is very large despite the low luminosity of dSph galaxies. [1]

Although at fainter luminosities of dwarf spheroidal galaxies, it is not universally agreed upon how to differentiate between a dwarf spheroidal galaxy and a star cluster; however, many astronomers decide this depending on the object's dynamics: If it seems to have more dark matter, then it is likely that it is a dwarf spheroidal galaxy rather than an enormous, faint star cluster. In the current predominantly accepted Lambda cold dark matter cosmological model, the presence of dark matter is often cited as a reason to classify dwarf spheroidal galaxies as a different class of object from globular clusters, which show little to no signs of dark matter. Because of the extremely large amounts of dark matter in dwarf spheroidal galaxies, they may deserve the title "most dark matter-dominated galaxies." [12]

Further evidence of the prevalence of dark matter in dSphs includes the case of Fornax dwarf spheroidal galaxy, which can be assumed to be in dynamic equilibrium to estimate mass and amount of dark matter, since the gravitational effects of the Milky Way are small. [13] Unlike the Fornax galaxy, there is evidence that the UMa2, a dwarf spheroidal galaxy in the Ursa Major constellation, experiences strong tidal disturbances from the Milky Way. [9]

A topic of research is how much the internal dynamics of dwarf spheroidal galaxies are affected by the gravitational tidal dynamics of the galaxy they are orbiting. In other words, dwarf spheroidal galaxies could be prevented from achieving equilibrium due to the gravitational field of the Milky Way or other galaxy that they orbit. [2] For example, the Sextans dwarf spheroidal galaxy has a velocity dispersion of 7.9±1.3 km/s, which is a velocity dispersion that could not be explained solely by its stellar mass according to the Virial Theorem. Similar to Sextans, previous studies of Hercules dwarf spheroidal galaxy reveal that its orbital path does not correspond to the mass contained in Hercules. [14] Furthermore, there is evidence that the UMa2, a dwarf spheroidal galaxy in the Ursa Major constellation, experiences strong tidal disturbances from the Milky Way. [9]

Related Research Articles

<span class="mw-page-title-main">Globular cluster</span> Spherical collection of stars

A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies, and the distinction between the two is not always clear. Their name is derived from Latin globulus. Globular clusters are occasionally known simply as "globulars".

<span class="mw-page-title-main">Local Group</span> Group of galaxies that includes the Milky Way

The Local Group is the galaxy group that includes the Milky Way, where Earth is located. It has a total diameter of roughly 3 megaparsecs (10 million light-years; 9×1019 kilometres), and a total mass of the order of 2×1012 solar masses (4×1042 kg). It consists of two collections of galaxies in a "dumbbell" shape; the Milky Way and its satellites form one lobe, and the Andromeda Galaxy and its satellites constitute the other. The two collections are separated by about 800 kiloparsecs (3×10^6 ly; 2×1019 km) and are moving toward one another with a velocity of 123 km/s. The group itself is a part of the larger Virgo Supercluster, which may be a part of the Laniakea Supercluster. The exact number of galaxies in the Local Group is unknown as some are occluded by the Milky Way; however, at least 80 members are known, most of which are dwarf galaxies.

<span class="mw-page-title-main">Sagittarius Dwarf Spheroidal Galaxy</span> Satellite galaxy of the Milky Way

The Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph), also known as the Sagittarius Dwarf Elliptical Galaxy, is an elliptical loop-shaped satellite galaxy of the Milky Way. It contains four globular clusters in its main body, with the brightest of them—NGC 6715 (M54)—being known well before the discovery of the galaxy itself in 1994. Sgr dSph is roughly 10,000 light-years in diameter, and is currently about 70,000 light-years from Earth, travelling in a polar orbit at a distance of about 50,000 light-years from the core of the Milky Way. In its looping, spiraling path, it has passed through the plane of the Milky Way several times in the past. In 2018 the Gaia project of the European Space Agency showed that Sgr dSph had caused perturbations in a set of stars near the Milky Way's core, causing unexpected rippling movements of the stars triggered when it moved past the Milky Way between 300 and 900 million years ago.

<span class="mw-page-title-main">Dwarf galaxy</span> Small galaxy composed of up to several billion stars

A dwarf galaxy is a small galaxy composed of about 1000 up to several billion stars, as compared to the Milky Way's 200–400 billion stars. The Large Magellanic Cloud, which closely orbits the Milky Way and contains over 30 billion stars, is sometimes classified as a dwarf galaxy; others consider it a full-fledged galaxy. Dwarf galaxies' formation and activity are thought to be heavily influenced by interactions with larger galaxies. Astronomers identify numerous types of dwarf galaxies, based on their shape and composition.

Ursa Major I Dwarf is a dwarf spheroidal galaxy that orbits the Milky Way galaxy. It was discovered in 2005 within the Ursa Major constellation and is the third least luminous known galaxy.

<span class="mw-page-title-main">Fornax Dwarf</span> Dwarf galaxy in the constellation Fornax

The Fornax Dwarf Spheroidal is an elliptical dwarf galaxy in the constellation Fornax that was discovered in 1938 by Harlow Shapley. He discovered it while he was in South Africa on photographic plates taken by the 24 inch (61 cm) Bruce refractor at Boyden Observatory, shortly after he discovered the Sculptor Dwarf Galaxy.

The Milky Way has several smaller galaxies gravitationally bound to it, as part of the Milky Way subgroup, which is part of the local galaxy cluster, the Local Group.

<span class="mw-page-title-main">Terzan 7</span>

Terzan 7 is a sparse and young globular cluster that is believed to have originated in the Sagittarius Dwarf Spheroidal Galaxy and is physically associated with it. It is relatively metal rich with [Fe/H] = -0.6 and an estimated age of 7.5 Gyr. Terzan 7 has low levels of nickel which supports its membership in the Sag DEG system since it has a similar chemical signature. It has a rich population of blue stragglers that are strongly concentrated toward the center of Terzan 7. It has an average luminosity distribution of Mv = -5.05. It has a half-light radius (Rh) of 6.5pc.

Ursa Major II Dwarf is a dwarf spheroidal galaxy situated in the Ursa Major constellation and discovered in 2006 in the data obtained by the Sloan Digital Sky Survey. The galaxy is located approximately 30 kpc from the Sun and moves towards the Sun with the velocity of about 116 km/s. It has an elliptical shape with the half-light radius of about 140 pc.

Segue 1 is a dwarf spheroidal galaxy or globular cluster situated in the Leo constellation and discovered in 2006 by Sloan Digital Sky Survey. It is located at a distance of about 23 kpc from the Sun and moves away from the Sun with the velocity of about 206 km/s. Segue 1 has a noticeably elongated shape with the half-light radius of about 30 pc. This elongation may be caused by the tidal forces acting from the Milky Way galaxy if Segue 1 is being tidally disrupted now.

<span class="mw-page-title-main">Leo IV (dwarf galaxy)</span>

Leo IV is a dwarf spheroidal galaxy situated in the Leo constellation, discovered in 2006 in the data obtained by the Sloan Digital Sky Survey. The galaxy is located at the distance of about 160 kpc from the Sun and moves away from the Sun with the velocity of about 130 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an approximately round shape with the half-light radius of about 130 pc.

Leo V is a dwarf spheroidal galaxy situated in the Leo constellation and discovered in 2007 in the data obtained by the Sloan Digital Sky Survey. The galaxy is located at a distance of about 180 kpc from the Sun and moves away from the Sun with the velocity of about 173 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an approximately spherical shape with the half-light radius of about 130 pc.

Canes Venatici II or CVn II is a dwarf spheroidal galaxy situated in the Canes Venatici constellation and discovered in 2006 in data obtained by the Sloan Digital Sky Survey. The galaxy is located at a distance of about 150 kpc from the Sun and moves towards the Sun with the velocity of about 130 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an elliptical shape with a half-light radius of about 74+14
−10
 pc
.

Coma Berenices or Com is a dwarf spheroidal galaxy situated in the Coma Berenices constellation and discovered in 2006 in data obtained by the Sloan Digital Sky Survey. The galaxy is located at the distance of about 44 kpc from the Sun and moves away from the Sun with the velocity of about 98 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an elliptical shape with the half-light radius of about 70 pc.

Boötes II or Boo II is a dwarf spheroidal galaxy situated in the constellation Boötes and discovered in 2007 in the data obtained by Sloan Digital Sky Survey. The galaxy is located at the distance of about 42 kpc from the Sun and moves towards the Sun with the speed of 120 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an approximately round shape with the half-light radius of about 51 pc.

<span class="mw-page-title-main">Hercules (dwarf galaxy)</span> Dwarf spheroidal galaxy in the constellation Hercules

Hercules, or Her, is a dwarf spheroidal galaxy situated in the Hercules constellation and discovered in 2006 in data obtained by the Sloan Digital Sky Survey. The galaxy is located at a distance of about 140 kpc from the Sun and moves away from the Sun with a velocity of about 45 km/s. It is classified as a dwarf spheroidal galaxy (dSph). It has a noticeably elongated shape with a half-light radius of about 350 pc. This elongation may be caused by tidal forces acting from the Milky Way galaxy, meaning that Her is being tidally disrupted now. Her also shows some gradient of velocities across the galaxy's body and is embedded into a faint stellar stream, which also points towards its ongoing tidal disruption.

Pisces II is a dwarf spheroidal galaxy situated in the Pisces constellation and discovered in 2010 in the data obtained by the Sloan Digital Sky Survey. The galaxy is located at the distance of about 180 kpc (kiloparsecs) from the Sun. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an elongated shape with the half-light radius of about 60 pc and ratio of the axis of about 5:3.

Leo T is a dwarf galaxy situated in the Leo constellation and discovered in 2006 in the data obtained by Sloan Digital Sky Survey. The galaxy is located at the distance of about 420 kpc from the Sun and moves away from the Sun with the velocity of about 35 km/s. The velocity with respect to the Milky Way is around −60 km/s implying a slow infall onto the Milky Way. Leo T is classified as a transitional object between dwarf spheroidal galaxies (dSph) and dwarf irregular galaxies (dIrr). Its half-light radius is about 180 pc.

<span class="mw-page-title-main">Ultra diffuse galaxy</span> Extremely low luminosity galaxy

An ultra diffuse galaxy (UDG), or Dark galaxy, is an extremely low luminosity galaxy, the first example of which was discovered in the nearby Virgo Cluster by Allan Sandage and Bruno Binggeli in 1984. These galaxies have been studied for many years prior to their renaming in 2015. Their lack of luminosity is due to the lack of star-forming gas, which results in these galaxies being reservoirs of very old stellar populations.

The Eridanus II Dwarf is a low-surface brightness dwarf galaxy in the constellation Eridanus. Eridanus II was independently discovered by two groups in 2015, using data from the Dark Energy Survey. This galaxy is probably a distant satellite of the Milky Way. Eridanus II contains a centrally located globular cluster; and is the smallest, least luminous galaxy known to contain a globular cluster. Crnojević et al., 2016. Eridanus II is significant, in a general sense, because the widely accepted Lambda CDM cosmology predicts the existence of many more dwarf galaxies than have yet been observed. The search for just such bodies was one of the motivations for the ongoing Dark Energy Survey observations. Eridanus II has special significance because of its apparently stable globular cluster. The stability of this cluster, near the center of such a small, diffuse, galaxy places constraints on the nature of dark matter.

References

  1. 1 2 Strigari, Louis E.; Bullock, James S.; Kaplinghat, Manoj; Simon, Joshua D.; Geha, Marla; Willman, Beth; Walker, Matthew G. (2008-08-28). "A common mass scale for satellite galaxies of the Milky Way". Nature. 454 (7208): 1096–1097. arXiv: 0808.3772 . Bibcode:2008Natur.454.1096S. doi:10.1038/nature07222. ISSN   0028-0836. PMID   18756252. S2CID   4373541.
  2. 1 2 3 4 5 6 Sparke, L.S.; Gallagher, J.S. III (2016). Galaxies in the Universe. United Kingdom: Cambridge University Press. pp. 162–165. ISBN   978-0-521-67186-6.
  3. Ferguson, Henry C.; Binggeli, Bruno (1994). "NASA/ADS Search". Astronomy and Astrophysics Review. 6 (1–2): 67. arXiv: astro-ph/9409079 . Bibcode:1994A&ARv...6...67F. doi:10.1007/BF01208252. S2CID   18879556.
  4. McConnachie, Alan W. (2012-06-05). "The Observed Properties of Dwarf Galaxies in and Around the Local Group". The Astronomical Journal. 144 (1): 4. arXiv: 1204.1562 . Bibcode:2012AJ....144....4M. doi:10.1088/0004-6256/144/1/4. ISSN   0004-6256. S2CID   118515618.
  5. Mateo, Mario L. (1998). "NASA/ADS Search". Annual Review of Astronomy and Astrophysics. 36: 435–506. arXiv: astro-ph/9810070 . Bibcode:1998ARA&A..36..435M. doi:10.1146/annurev.astro.36.1.435. S2CID   119333888.
  6. K., Grebel, E. (1998). "Star Formation Histories of Local Group Dwarf Galaxies". Highlights of Astronomy. 11: 125–126. arXiv: astro-ph/9806191 . Bibcode:1998HiA....11..125G. doi:10.1017/S1539299600020190.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Simon, Josh; Geha, Marla (November 2007). "The kinematics of the ultra-faint Milky Way satellites: Solving the missing satellite problem". The Astrophysical Journal. 670 (1): 313–331. arXiv: 0706.0516 . Bibcode:2007ApJ...670..313S. doi:10.1086/521816. S2CID   9715950.
  8. Koposov, Sergey E.; Belokurov, Vasily; Torrealba, Gabriel; Evans, N. Wyn (10 March 2015). "Beasts of the southern wild: Discovery of a large number of ultra-faint satellites in the vicinity of the Magellanic clouds". The Astrophysical Journal. 805 (2): 130. arXiv: 1503.02079 . Bibcode:2015ApJ...805..130K. doi:10.1088/0004-637X/805/2/130. S2CID   118267222.
  9. 1 2 3 Bonnivard, V.; Combet, C.; Daniel, M.; Funk, S.; Geringer-Sameth, A.; Hinton, J.A.; et al. (2015). "Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs". Monthly Notices of the Royal Astronomical Society. 453 (1): 849–867. arXiv: 1504.02048 . Bibcode:2015MNRAS.453..849B. doi:10.1093/mnras/stv1601.
  10. Bono, G.; Stetson, P.B.; Walker, A.R.; Monelli, M.; Fabrizio, M.; Pietrinferni, A.; et al. (2010-01-01). "On the stellar content of the Carina dwarf spheroidal galaxy". Publications of the Astronomical Society of the Pacific. 122 (892): 651. arXiv: 1004.2559 . Bibcode:2010PASP..122..651B. doi:10.1086/653590. ISSN   1538-3873. S2CID   119301603.
  11. van den Bergh, Sidney (November 2007). "Globular clusters and dwarf spheroidal galaxies". Monthly Notices of the Royal Astronomical Society: Letters. 385 (1): L20–L22. arXiv: 0711.4795 . Bibcode:2008MNRAS.385L..20V. doi:10.1111/j.1745-3933.2008.00424.x. S2CID   15093329.
  12. Strigari, Louie; Koushiappas, Savvas M.; Bullock, James S.; Kaplinghat, Manoj; Simon, Joshua D.; Geha, Marla; Willman, Beth; et al. (2008). "The most dark matter dominated galaxies: Predicted gamma-ray signals from the faintest Milky Way dwarfs". The Astrophysical Journal. 678 (2): 614–620. arXiv: 0709.1510 . Bibcode:2008ApJ...678..614S. doi:10.1086/529488. S2CID   11415491.
  13. Battaglia, Giuseppina; Sollima, Antonio; Nipoti, Carlo (2015). "The effect of tides on the Fornax dwarf spheroidal galaxy". Monthly Notices of the Royal Astronomical Society. 454 (3): 2401–2415. arXiv: 1509.02368 . Bibcode:2015MNRAS.454.2401B. doi:10.1093/mnras/stv2096.
  14. Roderick, T.A.; Jerjen, H.; Da Costa, G.S.; Mackey, A.D. (2016). "Structural analysis of the Sextans dwarf spheroidal galaxy". Monthly Notices of the Royal Astronomical Society. 460 (1): 30–43. arXiv: 1604.06214 . Bibcode:2016MNRAS.460...30R. doi:10.1093/mnras/stw949.